




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页专题4.21一次函数的应用(直通中考)(分层练习)考点类型【考点1】一次函数在方案分配问题中的应用;【考点2】一次函数在利润问题中的应用【考点3】一次函数在行程问题中的应用;【考点4】一次函数在几何问题中的应用【考点5】一次函数在其他问题中的应用1.(2020·四川广安·中考真题)某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗30棵,B种树苗15棵,共花费1350元;第二次购进A种树苗24棵,B种树苗10棵,共花费1060元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)若购买A,B两种树苗共42棵,总费用为W元,购买A种树苗t棵,B种树苗的数量不超过A种树苗数量的2倍.求W与t的函数关系式.请设计出最省钱的购买方案,并求出此方案的总费用.2.(2017·湖北咸宁·中考真题)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象(如图),图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?3.(2023·吉林长春·统考中考真题)甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚的垂直高度y(米)与甲登山的时间x(分钟)之间的函数图象如图所示.
(1)当时,求乙距山脚的垂直高度y与x之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.4.(2020·江苏南通·统考中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.
5.(2023·湖南·统考中考真题)我国航天事业发展迅速,2023年5月30日9时31分,神舟十六号载人飞船成功发射,某玩具店抓住商机,先购进了1000件相关航天模型玩具进行试销,进价为50元/件.(1)设每件玩具售价为x元,全部售完的利润为y元.求利润y(元)关于售价x(元/件)的函数表达式;(2)当售价定为60元/件时,该玩具销售火爆,该店继续购进一批该种航天模型玩具,并从中拿出这两批玩具销售利润的20%用于支持某航模兴趣组开展活动,在成功销售完毕后,资助经费恰好10000元,请问该商店继续购进了多少件航天模型玩具?6.(2023·四川·统考中考真题)某移动公司推出A,B两种电话计费方式.计费方式月使用费/元主叫限定时间/min主叫超时费/(元/min)被叫A免费B免费(1)设一个月内用移动电话主叫时间为tmin,根据上表,分别写出在不同时间范围内,方式A,方式B的计费金额关于t的函数解析式;(2)若你预计每月主叫时间为350min,你将选择A,B哪种计费方式,并说明理由;(3)请你根据月主叫时间t的不同范围,直接写出最省钱的计费方式.7.(2021·山东青岛·统考中考真题)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?8.(2023·江苏·统考中考真题)快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用时,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度为.两车之间的距离与慢车行驶的时间的函数图像如图所示.
(1)请解释图中点的实际意义;(2)求出图中线段所表示的函数表达式;(3)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.9.(2020·河南·统考中考真题)小亮在学习中遇到这样一个问题:如图,点是弧上一动点,线段点是线段的中点,过点作,交的延长线于点.当为等腰三角形时,求线段的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:根据点在弧上的不同位置,画出相应的图形,测量线段的长度,得到下表的几组对应值.操作中发现:①"当点为弧的中点时,".则上中的值是②"线段的长度无需测量即可得到".请简要说明理由;将线段的长度作为自变量和的长度都是的函数,分别记为和,并在平面直角坐标系中画出了函数的图象,如图所示.请在同一坐标系中画出函数的图象;继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当为等腰三角形时,线段长度的近似值.(结果保留一位小数).10.(2023·吉林·统考中考真题)甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和与甲组挖掘时间x(天)之间的关系如图所示.
(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y关于x的函数解析式,并写出自变量x的取值范围.(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组已停工的天数.11.(2020·四川乐山·中考真题)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿
车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?12.(2022·湖北襄阳·统考中考真题)为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额一成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.13.(2020·黑龙江牡丹江·统考中考真题)A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.14.(2020·河北·统考中考真题)表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.-10-21(1)求直线的解析式;(2)请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长;(3)设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值.15.(2023·江苏苏州·统考中考真题)某动力科学研究院实验基地内装有一段笔直的轨道,长度为的金属滑块在上面做往返滑动.如图,滑块首先沿方向从左向右匀速滑动,滑动速度为,滑动开始前滑块左端与点重合,当滑块右端到达点时,滑块停顿,然后再以小于的速度匀速返回,直到滑块的左端与点重合,滑动停止.设时间为时,滑块左端离点的距离为,右端离点的距离为,记与具有函数关系.已知滑块在从左向右滑动过程中,当和时,与之对应的的两个值互为相反数;滑块从点出发到最后返回点,整个过程总用时(含停顿时间).请你根据所给条件解决下列问题:(1)滑块从点到点的滑动过程中,的值________________;(填“由负到正”或“由正到负”)(2)滑块从点到点的滑动过程中,求与的函数表达式;(3)在整个往返过程中,若,求的值.参考答案1.(1)A种树苗每棵的价格为40元,B种树苗每棵的价格为10元;(2)W=30t+420,当购买A种树苗14棵,B种树苗28棵时,总费用最少,最少为840元【分析】(1)设A种树苗每棵的价格为x元,B种树苗每棵的价格为y元,根据题意,列出二元一次方程组即可求出结论;(2)根据题意,即可求出W与t的函数关系式,然后根据题意,求出t的取值范围,利用一次函数的增减性即可求出结论.解:(1)设A种树苗每棵的价格为x元,B种树苗每棵的价格为y元,由题意可得:解得:答:A种树苗每棵的价格为40元,B种树苗每棵的价格为10元.(2)由题意可得:W=40t+10(42-t)=30t+420解得:14≤t<42∵W=30t+420中,30>0∴W随t的增大而增大∴当t=14时,W最小,最小值为30×14+420=840此时B种树苗42-14=28棵答:当购买A种树苗14棵,B种树苗28棵时,总费用最少,最少为840元.【点拨】此题考查的是二元一次方程组的应用和一次函数的应用,掌握实际问题中的等量关系和利用一次函数的增减性求最值是解题关键.2.(1)330;660;(2)答案见分析;(3)日销售利润不低于640元的天数共有11天,试销售期间,日销售最大利润是720元.解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.3.(1);(2)【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y与x之间的函数关系式为,联立,即可求解.(1)解:设乙距山脚的垂直高度y与x之间的函数关系式为,将,代入得,,解得:,∴;(2)设甲距山脚的垂直高度y与x之间的函数关系式为将点代入得,解得:,∴;联立解得:∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为米【点拨】本题考查了一次函数的应用,熟练掌握待定系数法求解析式是解题的关键.4.(1)y=﹣2x+6;(2)M(3,6)或(﹣1,2).【分析】(1)把点C的坐标代入y=x+3,求出m的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M、N两点的横坐标,利用两点间距离公式求出M的坐标.解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).【点拨】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,求得交点坐标是解题的关键.5.(1);(2)该商店继续购进了件航天模型玩具.【分析】(1)根据总利润=单件利润×销售量,可求得利润y(元)关于售价x(元/件)的函数表达式;(2)设商店继续购进了m件航天模型玩具,根据“销售利润的20%恰好10000元”列一元一次方程,解之即可.(1)解:因每件玩具售价为x元,依题意得;(2)解:设商店继续购进了m件航天模型玩具,则总共有件航天模型玩具,依题意得:,解得,答:该商店继续购进了件航天模型玩具.【点拨】本题考查了一次函数的应用,一元一次方程的应用,理解题意找到题目蕴含的相等关系,并据此列出方程或函数解析式是解题的关键.6.(1)见分析;(2)选方式B计费,理由见分析;(3)见分析.【分析】(1)根据题意,设两种计费金额分别为、,分别计算三个不同范围内的A、B两种方式的计费金额即可;(2)令,根据(1)中范围求出对应两种计费金额,选择费用低的方案即可;(3)令,求出此时的值,当主叫时间时,方式A省钱;当主叫时间时,方式A和B一样;当主叫时间时,方式B省钱;(1)解:根据题意,设两种计费金额分别为、当时,方式A的计费金额为元,方式B的计费金额为108元;方式A的计费金额,方式B的计费金额为108元;当时,方式A的计费金额为,方式B的计费金额为总结如下表:主叫时间/分钟方式A计费()方式B计费()78108108(2)解:当时,,故选方式B计费.(3)解:令,有解得∴当时,方式A更省钱;当时,方式A和B金额一样;当时,方式B更省钱.【点拨】本题考查了一次函数在电话计费中的应用,根据题意分段讨论是求解的关键.7.(1)甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶;(2)购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元【分析】(1)设甲品牌洗衣液每瓶的进价是x元,则乙品牌洗衣液每瓶的进价是(x-6)元,根据数量=总价÷单价,结合用1800元购进乙品牌洗衣液数量的,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m瓶乙品牌洗手液,则可以购买(100-m)瓶甲品牌洗手液,根据总价=单价×数量,结合总费用不超过1645元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.解:(1)设甲品牌洗衣液进价为元/瓶,则乙品牌洗衣液进价为元/瓶,由题意可得,,解得,经检验是原方程的解.答:甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶.(2)设利润为元,购进甲品牌洗衣液瓶,则购进乙品牌洗衣液瓶,由题意可得,,解得,由题意可得,,∵,∴随的增大而增大,∴当时,取最大值,.答:购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元.【点拨】本题考查分式方程的应用,一次函数的应用,一元一次不等式的应用,解题的关键是灵活运用所学知识解决问题.8.(1)快车到达乙地时,慢车距离乙地还有;(2);(3)小时【分析】(1)根据点的纵坐标最大,可得两车相距最远,结合题意,即可求解;(2)根据题意得出,进而待定系数法求解析式,即可求解;(3)先求得快车的速度进而得出总路程,再求得快车返回的速度,即可求解.(1)解:根据函数图象,可得点的实际意义为:快车到达乙地时,慢车距离乙地还有(2)解:依题意,快车到达乙地卸装货物用时,则点的横坐标为,此时慢车继续行驶小时,则快车与慢车的距离为,∴设直线的表达式为∴解得:∴直线的表达式为(3)解:设快车去乙地的速度为千米/小时,则,解得:∴甲乙两地的距离为千米,设快车返回的速度为千米/小时,根据题意,解得:,∴两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需(小时)【点拨】本题考查了一次函数的应用,一元一次方程,根据函数图象获取信息是解题的关键.9.(1)①5.0;②见分析;(2)图象见分析;(3)图象见分析;3.5cm或5.0cm或6.3cm;【分析】(1)①点为弧的中点时,△ABD≌△ACD,即可得到CD=BD;②由题意得△ACF≌△ABD,即可得到CF=BD;(2)根据表格数据运用描点法即可画出函数图象;(3)画出的图象,当为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD的近似值.解:(1)①点为弧的中点时,由圆的性质可得:,∴△ABD≌△ACD,∴CD=BD=5.0,∴;②∵,∴,∵,∴△ACF≌△ABD,∴CF=BD,∴线段的长度无需测量即可得到;(2)函数的图象如图所示:(3)由(1)知,画出的图象,如上图所示,当为等腰三角形时,①,BD为与函数图象的交点横坐标,即BD=5.0cm;②,BD为与函数图象的交点横坐标,即BD=6.3cm;③,BD为与函数图象的交点横坐标,即BD=3.5cm;综上:当为等腰三角形时,线段长度的近似值为3.5cm或5.0cm或6.3cm.【点拨】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.10.(1)30;(2);(3)10天【分析】(1)由图可知,前30天甲乙两组合作,30天以后甲组单独做,据此计算即可;(2)设乙组停工后y关于x的函数解析式为,用待定系数法求解,再结合图象即可得到自变量x的取值范围;(3)先计算甲乙两组每天各挖掘多少千米,再计算乙组挖掘的总长度,设乙组已停工的天数为a,根据甲组挖掘的总长度与乙组挖掘的总长度相等列方程计算即可.(1)解:由图可知,前30天甲乙两组合作,30天以后甲组单独做,∴甲组挖掘了60天,乙组挖掘了30天,(天)∴甲组比乙组多挖掘了30天,故答案为:30;(2)解:设乙组停工后y关于x的函数解析式为,将和两个点代入,可得,解得,∴(3)解:甲组每天挖(米)甲乙合作每天挖(米)∴乙组每天挖(米),乙组挖掘的总长度为(米)设乙组己停工的天数为a,则,解得,答:乙组已停工的天数为10天.【点拨】本题考查了一次函数的应用,待定系数法求函数的解析式,理解题意观察图象得到有用信息是解题的关键.11.(1)租用一辆轿车的租金为元;(2)租用商务车辆和轿车辆时,所付租金最少为元.【分析】(1)本题可假设轿车的租金为x元,并根据题意列方程求解即可.(2)本题可利用两种方法求解,核心思路均是分类讨论,讨论范围分别是两车各租其一以及两车混合租赁,方法一可利用一次函数作为解题工具,根据函数特点求解本题;方法二则需要利用枚举法求解本题.解:(1)设租用一辆轿车的租金为元.由题意得:.解得
,答:租用一辆轿车的租金为元.(2)方法1:①若只租用商务车,∵,∴只租用商务车应租6辆,所付租金为(元);②若只租用轿车,∵,∴只租用轿车应租9辆,所付租金为(元);③若混和租用两种车,设租用商务车辆,租用轿车辆,租金为元.由题意,得
由,得,∴,∵,∴,∴,且为整数,∵随的增大而减小,∴当时,有最小值,此时,综上,租用商务车辆和轿车辆时,所付租金最少为元.方法2:设租用商务车辆,租用轿车辆,租金为元.由题意,得
由,得,∴,∵为整数,∴只能取0,1,2,3,4,5,故租车方案有:不租商务车,则需租9辆轿车,所需租金为(元);租1商务车,则需租7辆轿车,所需租金为(元);租2商务车,则需租6辆轿车,所需租金为(元);租3商务车,则需租4辆轿车,所需租金为(元);租4商务车,则需租3辆轿车,所需租金为(元);租5商务车,则需租1辆轿车,所需租金为(元);由此可见,最佳租车方案是租用商务车辆和轿车辆,此时所付租金最少,为元.【点拨】本题考查一次函数的实际问题以及信息提取能力,此类型题目需要根据题干所求列一次函数,并结合题目限制条件对函数自变量进行限制,继而利用函数单调性以及分类讨论思想解答本题.12.(1);(2);当购进甲产品2000千克,乙产品4000千克时,利润最大为24000元;(3)的最大值为.【分析】(1)分当时,当时,利用待定系数法求解即可;(2)根据题意可知,分当时,当时,分别列出与的函数关系式,根据一次函数的性质可得出结论;(3)根据题意可知,降价后,与的关系式,并根据利润不低于15000,可得出的取值范围.解:(1)当时,设,根据题意可得,,解得,;当时,设,根据题意可得,,解得,..(2)根据题意可知,购进甲种产品千克,,当时,,,当时,的最大值为;当时,,,当时,的最大值为(元,综上,;当购进甲产品2000千克,乙产品4000千克时,利润最大为24000元.(3)根据题意可知,降价后,,当时,取得最大值,,解得.的最大值为.【点拨】本题考查了一次函数的应用,解题的关键是找准等量关系,正确列出函数关系式.13.(1)60,10;(2)y=80t-320;(3)甲车出发小时或9小时时,两车距C市的路程之和是460千米.【分析】(1)由图象分析可得甲车行驶用时为8小时,即可求解其速度,进而乙车速度也可知,则图中括号内的数字也可求解;(2)利用待定系数法即可求解;(3)分析整个运动过程,分三种情况进行讨论,分别求出对应的t即可求解.解:(1)由图象可知甲车在时行驶到C市,此时行驶的路程为,故速度为,∴乙车的行驶速度为:,∴乙车由C市到A市需行驶,∴图中括号内的数为,故答案为:60,10;(2)设线段MN所在直线的解析式为y=kt+b(k≠0).把点M(4,0),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级地理下册 7.1 日本教学设计 湘教版
- 2 做中华人文精神的弘扬者公开课一等奖创新教学设计- 统编版道德与法治七年级下册
- 人教版历史与社会八年级下册 6.2《连通世界的新航路》教学设计
- 幼儿律动编创流程
- 2025年度商务礼仪知识竞赛试题及答案(一)
- 小学统编版(2024)骑鹅旅行记教学设计及反思
- 鲁教版化学(五四学制)八年级4.3《到实验室去:氧气的实验室制取与性质》教学课件
- 租赁合同及订单处理流程
- 重庆房屋买卖合同范本
- 厨房卫生间装修合同
- 针刀操作安全区带
- THBFIA 0004-2020 红枣制品标准
- GB/T 6072.1-2000往复式内燃机性能第1部分:标准基准状况,功率、燃料消耗和机油消耗的标定及试验方法
- 苏教版科学(2017)六年级下册教学计划及教学进度表
- 测量小灯泡的功率实验报告单
- 卫生人才培养方案计划
- 图书馆建筑设计规范讲解课件
- 四川省教师资格认定体检表
- 培养中班幼儿正确使用筷子的研究的结题报告
- 湘教版七年级上册等高线地形图
- 车间改造合同范文
评论
0/150
提交评论