版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安市实验中学2022年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知以F为焦点的抛物线y2=4x上的两点A,B满足,则直线AB的斜率为()A. B. C.±4 D.参考答案:D【考点】直线与抛物线的位置关系.【分析】画出图形,利用抛物线的性质,列出关系式求解直线的斜率即可.【解答】解:以F为焦点的抛物线y2=4x上的两点A,B满足,设BF=2m,由抛物线的定义知:AA1=3m,BB1=2m,∴△ABC中,AC=m,AB=5m,BC=m.kAB=±,故选:D.2.已知{an}是等比数列,且,,那么的值等于(
).A.6 B12 C.18 D.24参考答案:A由等比数列的性质可得,又∵,∴,∴.故选.3.复数z=的共轭复数是()A.2+iB.2﹣iC.﹣1+iD.﹣1﹣i参考答案:D略4.下列说法中正确的是(
)A.命题“若,则”的逆命题是真命题B.命题“或”为真命题,则命题和命题均为真命题C.直线不在平面内,则“上有两个不同点到的距离相等”是“”的充要条件D.命题“”的否定为:“”参考答案:D5.在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A. B. C. D.参考答案:D【考点】HP:正弦定理.【分析】利用正弦定理可求得sinA,结合题意可求得角A.【解答】解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.【点评】本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60参考答案: C【考点】DC:二项式定理的应用.【分析】利用展开式的通项,即可得出结论.【解答】解:(x2+x+y)5的展开式的通项为Tr+1=,令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.7.下列双曲线,离心率的是(
)
A.B.
C.D.参考答案:B8.定义:,如,则(
)A.0
B.
C.3
D.4参考答案:D9.正整数按下表的规律排列,则上起第2005行,左起第2006列的数应为(
)A. B. C. D.参考答案:D10.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线方程=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大其中正确的是()A.①④ B.②③ C.①③ D.②④参考答案:B【考点】BL:独立性检验;B3:分层抽样方法;BK:线性回归方程.【分析】第一个命题是一个系统抽样;这个说法不正确,两个随机变量相关性越强,则相关系数的绝对值越接近于1;在回归直线方程中,代入一个x的值,得到的是预报值,对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,【解答】解:从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①不正确,两个随机变量相关性越强,则相关系数的绝对值越接近于1.②正确在回归直线方程中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.③正确,对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,④不正确.综上可知②③正确,故选B.二、填空题:本大题共7小题,每小题4分,共28分11.某市有A、B、C三所学校共有高二学生1500人,且A、B、C三所学校的高二学生人数成等差数列,在进行全市联考后,准备用分层抽样的方法从所有高二学生中抽取容量为120的样本进行成绩分析,则应从B校学生中抽取________人.
参考答案:40略12.某单位为了了解用电量y(度)与气温x(°C)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温(°C)181310-1用电量(度)24343864由表中数据,得线性回归方程当气温为–4°C时,预测用电量的度数约为
.参考答案:6813.已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=.参考答案:12【分析】画出图形,利用中点坐标以及椭圆的定义,即可求出|AN|+|BN|的值.【解答】解:如图:MN的中点为Q,易得,,∵Q在椭圆C上,∴|QF1|+|QF2|=2a=6,∴|AN|+|BN|=12.故答案为:12.【点评】本题考查椭圆的定义,椭圆的基本性质的应用,是对基本知识的考查.14.若正数、满足,则的最小值为
.参考答案:2515.代号为“狂飙”的台风于某日晚8点在距A港口南偏东的400千米的海面上形成,预计台风中心将以40千米/时的速度向正北方向移动,离台风中心350千米的范围都会受到台风影响,则A港口从受到台风影响到影响结束,将持续
小时.参考答案:解析:设经过t小时后,A港口将受到影响,依题设得4002+(40t)2–2×400×40tcos60°≤3502,化简得16t2–160t+375≤0,解之得≤t≤.故受影响的时间为2.5小时.16.若规定E={a1,a2,…,a10}的子集{at1,at2,…,ak}为E的第k个子集,其中,则E的第211个子集是.参考答案:{a1,a2,a5,a7,a8}【考点】16:子集与真子集.【分析】根据题意,分别讨论2n的取值,通过讨论计算n的可能取值,即可得答案.【解答】解:∵27=128<211,而28=256>211,∴E的第211个子集包含a8,此时211﹣128=83,∵26=64<83,27=128>83,∴E的第211个子集包含a7,此时83﹣64=19,∵24=16<19,25=32>19,∴E的第211个子集包含a5,此时19﹣16=3∵21<3,22=4>3,∴E的第211个子集包含a2,此时3﹣2=1,20=1,∴E的第211个子集包含a1.∴E的第211个子集是{a1,a2,a5,a7,a8};故答案为:{a1,a2,a5,a7,a8}.17.四棱锥的各棱长都相等,是侧棱的中点,则与底面所成角的正弦值是___________。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设,不等式的解集记为集合.(Ⅰ)若,求的值.(Ⅱ)当时,求集合.参考答案:,(),∴,为两根,∴代入,.(),两根为,,①,时,.②,时或.③,时,或.综上:时,或,时,,时,或.19.已知函数f(x)=lnx﹣kx+1.(1)当k=2时,求函数的单调增区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围.参考答案:【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(2)问题转化为在(0,+∞)上恒成立,令,根据函数的单调性求出k的范围即可.【解答】解:函数y=f(x)的定义域为(0,+∞)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1)当k=2时,f(x)=lnx﹣2x+1,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由,所以函数的单调增区间为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由f(x)≤0得kx≥lnx+1,即在(0,+∞)上恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令,则.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由g'(x)>0得0<x<1,由g'(x)<0得x>1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以g(x)在(0,1)为增区间,在(1,+∞)为减区间,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以当x=1时,g(x)max=g(1)=1.故k≥1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.已知各项均不为零的数列,其前项和满足.在公差不为0的等差数列中,,且是与的等比中项.(1)求和,(2)记,求的前n项和.参考答案:解:(1)对于数列,由题设可知
①,当时,
②,①-②得,即,,,又是以1为首项,以为公比的等比数列,.………(5分)设等差数列的公差为,由题设可知,又,,解得或(舍去).………(8分)(2),
③,
④,③-④得,.………(13分)
略21.已知椭圆的右焦点与抛物线的焦点重合,椭圆与抛物线在第一象限的交点为,.(1)求椭圆的方程;(2)若过点的直线与椭圆相交于、两点,求使成立的动点的轨迹方程;(3)若点满足条件(2),点是圆上的动点,求的最大值.参考答案:.又,且,
……………4分解得.
∴椭圆的方程为.
……………5分[z|zs|]解法2:抛物线的焦点的坐标为,设点的坐标为,.∵,∴.
①
……………1分∵点在抛物线上,∴.
②
解①②得,.∴点的坐标为.
……………2分
∵点在椭圆上,
∴.
……………3分又,且,
……………4分解得.
∴椭圆的方程为.
……………5分(2)解法1:设点、、,
则.
∴.∵,∴.
①
……………6分∵、在椭圆上,
∴
上面两式相减得.②
把①式代入②式得.
[中+国教+育出+版网]当时,得.
③
……………7分设的中点为,则的坐标为.
∵、、、四点共线,∴,即.
④
……………8分把④式代入③式,得,化简得.
……………9分
当时,可得点的坐标为,经检验,点在曲线上.
∴动点的轨迹方程为.
……………10分解法2:当直线的斜率存在时,设直线的方程为,
由消去,得.
设点、、,
则,
②
……………7分[]①②得,
③
……………8分把③代入②化简得.
(*)
……………9分当直线的斜率不存在时,设直线的方程为,依题意,可得点的坐标为,经检验,点在曲线上.
∴动点的轨迹方程为.
……………10分
∴当时,,
……………13分
此时,.
……………
略22.(本小题满分12分)为了搞好世界大学生夏季运动会接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):
若身高在175cm以上(包括175cm)定义为“高个子”,
身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。(1)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从
这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。参考答案:解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,…………1分用分层抽样的方法,每个人被抽中的概率是,
…………2分所以选中的“高个子”有人,“非高个子”有人.…………
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际货运代理行业营销策略方案
- 使用在皮肤上的驱蚊剂产品供应链分析
- 废弃物资源化利用行业市场调研分析报告
- 电动绿篱修剪机产品供应链分析
- 维生素软糖细分市场深度研究报告
- 芥末罐商业机会挖掘与战略布局策略研究报告
- 牙膏细分市场深度研究报告
- 书包产品供应链分析
- 电源连接器市场发展前景分析及供需格局研究预测报告
- 蒸汽供暖装置用气阀细分市场深度研究报告
- 托卡马克装置原理2[1]
- “模拟法庭”在高中法律教学中的应用与探究
- 江苏自考数学教育学知识点
- [二手房买卖合同正式版] 二手房买卖合同最新版
- 部编版五年级语文上册第四单元集体备课教学计划和全部教案
- 五年级语文上册 第六单元 22《蝉》课后练习 北京版-北京版小学五年级上册语文试题
- 最新部编版五年级道德与法治上册第四单元教材分析
- 课程设计 基于电阻应变片的S型称重传感器设计
- 中国血液透析用血管通路专家共识
- cosplay评分标准
- 中医真实世界临床研究技术规范(草案)
评论
0/150
提交评论