版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、问题描述:一天然气输送管道,内表面承受气体压力P的作用,分析管道的应力分布。因为管道长度很长,可以作为平面应变问题处理,建模时只需要建立其横截面就可以了。管道几何参数:
外径:0.6m,内径0.4m,壁厚0.2m管道材料参数:
弹性模量:E=200GPa,泊松比v=0.26载荷:P=1MPa二、建模过程1、定义单元类型:选择Solid82单元,然后在单元类型对话框中点击Options...按钮,弹出如下对话框:
K3选项选为:Planestrain,其他两个保持默认就可以。如上图所示。2、定义材料性质3、创建几何模型
3.1选择PartialAnnulus命令3.2在弹出的对话框中输入如下图所示参数:单击ok按钮即可生成如下所示图形:
3.3对上述模型分别沿yz平面和xz平面镜像,生成完整的几何模型。完成后的模型如下图所示:
3.4合并重复的关键点和线
从如下菜单中选择MergeItems从弹出的如下所示的对话框中,选择all,然后单击ok按钮退出。4、剖分网格
4.1网格尺寸控制
定义单元大小为0.05,用mapped的方法剖分,如下图:剖分完成后的网格如下图所示:5、定义约束和载荷
5.1定义载荷,载荷施加在内圆上,大小为1MPa。
5.2定义约束,由于结构的对称性,只需要约束如下所示线段2和线段9的x方向约束,以及线段4和线段7的y方向约束即可。
定义完成后的模型如下:
5、求解,查看结果
位移云图:x方向应力云图y方向应力云图平面向量概念、方法、题型总结一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如:已知A(1,2),B(4,2),则把向量按向量=(-1,3)平移后得到的向量是_____(答:(3,0))2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与平行的单位向量是);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有);④三点共线共线;6.负向量:长度相等方向相反的向量叫做负向量。的负向量是-。如下列命题:(1)若,则。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若,则是平行四边形。(4)若是平行四边形,则。(5)若,则。(6)若,则。其中正确的是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如,,等;3.坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为,称为向量的坐标,=叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同,此向量称作位置向量。三.平面向量的分解定理:如果和是同一平面内的两个不共线向量,那么对该平面内的任一向量,有且只有一对实数、,使=+。如(1)若,则______(用,表示)(答:);(2)下列向量组中,能作为平面内所有向量基底的是A.B.C.D.(答:B);(3)已知分别是的边上的中线,且,则可用向量表示为_____(答:);(4)已知中,点在边上,且,,则的值是___(答:0)四.实数与向量的积:实数与向量的积是一个向量,记作,它的长度和方向规定如下:当>0时,的方向与的方向相同,当<0时,的方向与的方向相反,当=0时,,注意:≠0。五.平面向量的数量积:1.两个向量的夹角:对于非零向量,,作,称为向量,的夹角,当=0时,,同向,当=时,,反向,当=时,,垂直。2.平面向量的数量积:如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即=。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。如(1)△ABC中,,,,则_________(答:-9);(2)已知,与的夹角为,则等于____(答:1);(3)已知,则等于____(答:);(4)已知是两个非零向量,且,则的夹角为____(答:)3.在上的投影为,它是一个实数,但不一定大于0。如已知,,且,则向量在向量上的投影为______(答:)4.的几何意义:数量积等于的模与在上的投影的积。5.向量数量积的性质:设两个非零向量,,其夹角为,则:①;②当,同向时,=,特别地,;当与反向时,=-;当为锐角时,>0,且不同向,是为锐角的必要非充分条件;当为钝角时,<0,且不反向,是为钝角的必要非充分条件;③非零向量,夹角的计算公式:;④。如(1)已知,,如果与的夹角为锐角,则的取值范围是______(答:或且);(2)已知的面积为,且,若,则夹角的取值范围是_________(答:);(3)已知与之间有关系式,①用表示;②求的最小值,并求此时与的夹角的大小(答:①;②最小值为,)六.向量的运算:1.几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,那么向量叫做与的和,即;②向量的减法:用“三角形法则”:设,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。如(1)化简:①___;②____;③_____(答:①;②;③);(2)若正方形的边长为1,,则=_____(答:);(3)若O是所在平面内一点,且满足,则的形状为____(答:直角三角形);(4)若为的边的中点,所在平面内有一点,满足,设,则的值为___(答:2);(5)若点是的外心,且,则的内角为____(答:);2.坐标运算:设,则:①向量的加减法运算:,。如(1)已知点,,若,则当=____时,点P在第一、三象限的角平分线上(答:);(2)已知,,则(答:或);(3)已知作用在点的三个力,则合力的终点坐标是(答:(9,1))②实数与向量的积:。③若,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如设,且,,则C、D的坐标分别是__________(答:);④平面向量数量积:。如已知向量=(sinx,cosx),=(sinx,sinx),=(-1,0)。(1)若x=,求向量、的夹角;(2)若x∈,函数的最大值为,求的值(答:或);⑤向量的模:。如已知均为单位向量,它们的夹角为,那么=_____(答:);⑥两点间的距离:若,则。如七.向量的运算律:1.交换律:,,;2.结合律:,;3.分配律:,。如下列命题中:①;②;③;④若,则或;⑤若则;⑥;⑦;⑧;⑨。其中正确的是______(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即,为什么?八.向量平行(共线)的充要条件:都是非零向量(1)=0。(2)(3)若如(1)若向量,当=_____时与共线且方向相同(答:2);(2)已知,,,且,则x=______(答:4);(3)设,则k=_____时,A,B,C共线(答:-2或11)九.向量垂直的充要条件:.特别地。如(1)已知,若,则(答:);(2)以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,,则点B的坐标是________(答:(1,3)或(3,-1));(3)已知向量,且,则的坐标是________(答:)十.线段的定比分点:1.定比分点的概念:设点P是直线PP上异于P、P的任意一点,若存在一个实数,使,则叫做点P分有向线段所成的比,P点叫做有向线段的以定比为的定比分点;2.的符号与分点P的位置之间的关系:当P点在线段PP上时>0;当P点在线段PP的延长线上时<-1;当P点在线段PP的延长线上时;若点P分有向线段所成的比为,则点P分有向线段所成的比为。如若点分所成的比为,则分所成的比为_______(答:)3.线段的定比分点公式:设、,分有向线段所成的比为,则,特别地,当=1时,就得到线段PP的中点公式。在使用定比分点的坐标公式时,应明确,、的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比。如(1)若M(-3,-2),N(6,-1),且,则点P的坐标为_______(答:);(2)已知,直线与线段交于,且,则等于_______(答:2或-4)十一、向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;(2),特别地,当同向或有;当反向或有;当不共线(这些和实数比较类似).(3)在中,①若,则其重心的坐标为。如若⊿ABC的三边的中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电话销售策略总结
- 旅游行业导游服务技巧总结
- 冷链物流保安工作总结
- 2023年广西壮族自治区河池市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年吉林省白山市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年辽宁省鞍山市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2024年四川省绵阳市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 青海省果洛藏族自治州(2024年-2025年小学六年级语文)部编版阶段练习(下学期)试卷及答案
- 2024年楼梯配件项目资金申请报告代可行性研究报告
- 2025年梅毒诊断抗原项目申请报告
- 广东省佛山市南海区三水区2022-2023学年七年级上学期期末历史试题(无答案)
- 重视心血管-肾脏-代谢综合征(CKM)
- 学术英语(理工类)
- 浅谈“五育并举”背景下中小学劳动教育的探索与研究 论文
- 大树的故事 单元作业设计
- 六年级道德与法治学情分析
- 新加坡双语教育政策发展研究
- (全国通用版)小学英语四大时态综合练习(含答案)
- 走近翻译学习通超星课后章节答案期末考试题库2023年
- 互联网体检对话版
- 西方宪政民主主义思潮34张课件
评论
0/150
提交评论