山东省枣庄第八中学东校区2024届高一上数学期末质量跟踪监视试题含解析_第1页
山东省枣庄第八中学东校区2024届高一上数学期末质量跟踪监视试题含解析_第2页
山东省枣庄第八中学东校区2024届高一上数学期末质量跟踪监视试题含解析_第3页
山东省枣庄第八中学东校区2024届高一上数学期末质量跟踪监视试题含解析_第4页
山东省枣庄第八中学东校区2024届高一上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄第八中学东校区2024届高一上数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.对于函数的图象,关于直线对称;关于点对称;可看作是把的图象向左平移个单位而得到;可看作是把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到以上叙述正确的个数是A.1个 B.2个C.3个 D.4个2.如图,正方体中,①与平行;②与垂直;③与垂直以上三个命题中,正确命题的序号是()A.①② B.②③C.③ D.①②③3.若幂函数的图象经过点,则=A. B.C.3 D.94.已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为A.1 B.2C.3 D.45.当时,函数(,),取得最小值,则关于函数,下列说法错误的是()A.是奇函数且图象关于点对称B.偶函数且图象关于点(π,0)对称C.是奇函数且图象关于直线对称D.是偶函数且图象关于直线对称6.定义在上的函数,当时,,若,则、、的大小关系为()A. B.C. D.7.若偶函数在区间上单调递增,且,则不等式的解集是()A. B.C. D.8.已知函数,若存在不相等的实数a,b,c,d满足,则的取值范围为()A B.C. D.9.已知函数,函数,若有两个零点,则m的取值范围是()A. B.C. D.10.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积S可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A.6 B.9C.12 D.1811.设函数,且在上单调递增,则的大小关系为A B.C. D.不能确定12.设.若存在,使得,则的最小值是()A.2 B.C.3 D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知幂函数的图象过点,则_____________14.若关于的方程的一个根在区间上,另一个根在区间上,则实数的取值范围是__________15.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.16.据资料统计,通过环境整治.某湖泊污染区域的面积与时间t(年)之间存在近似的指数函数关系,若近两年污染区域的面积由降至.则使污染区域的面积继续降至还需要_______年三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数的部分图象如下图所示(1)求函数的解析式;(2)讨论函数在上的单调性18.已知:(1)求的值(2)若,求的值.19.如图,在四棱锥中,底面ABCD为平行四边形,,平面底面ABCD,M是棱PC上的点.(1)证明:底面;(2)若三棱锥的体积是四棱锥体积的,设,试确定的值.20.(附加题,本小题满分10分,该题计入总分)已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质(1)若,判断是否具有性质,说明理由;(2)若函数具有性质,试求实数的取值范围21.已知函数(且).(1)若函数的定义域为,求实数的取值范围;(2)函数的定义域为,且满足如下条件:存在,使得在上的值域为,那么就称函数为“二倍函数”.若函数是“二倍函数”,求实数的取值范围.22.在平面直角坐标系中,已知角的顶点都与坐标原点重合,始边都与x轴的非负半轴重合,角的终边与单位圆交于点,角的终边在第二象限,与单位圆交于点Q,扇形的面积为.(1)求的值;(2)求的值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由判断;由判断;由的图象向左平移个单位,得到的图象判断;由的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象判断.【详解】对于函数的图象,令,求得,不是最值,故不正确;令,求得,可得的图象关于点对称,故正确;把的图象向左平移个单位,得到的图象,故不正确;把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象,故正确,故选B【点睛】本题通过对多个命题真假的判断,综合考查三角函数的对称性以及三角函数的图象的变换规律,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.2、C【解析】根据线面平行、线面垂直的判定与性质,即可得到正确答案【详解】解:对于①,在正方体中,由图可知与异面,故①不正确对于②,因为,不垂直,所以与不垂直,故②不正确对于③,在正方体中,平面,又∵平面,∴与垂直.故③正确故选:C【点睛】此题考查线线平行、线线垂直,考查学生的空间想象能力和对线面平行、线面垂直的判定与性质的理解与掌握,属基础题3、B【解析】利用待定系数法求出幂函数y=f(x)的解析式,再计算f(3)的值【详解】设幂函数y=f(x)=xα,其图象经过点,∴2α,解得α,∴f(x),∴f(3)故选B【点睛】本题考查了幂函数的定义与应用问题,是基础题4、B【解析】由题意可得,故中元素的个数为2,所以选B.【名师点睛】集合基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图5、C【解析】根据正弦型函数的性质逐一判断即可.【详解】因为当时,函数取得最小值,所以,因为,所以令,即,所以,设,因为,所以函数是奇函数,因此选项B、D不正确;因为,,所以,因此函数关于直线对称,因此选项A不正确,故选:C6、C【解析】令,求得,得到是奇函数,再令,证得在上递减判断.【详解】因为,令,得,解得,令,得,所以是奇函数,因时,,则,,令,则,,且,则,,所以,即,即,所以在上递减,,因为,所以,故选:C7、D【解析】由偶函数定义可确定函数在上的单调性,由单调性可解不等式.【详解】由于函数是偶函数,在区间上单调递增,且,所以,且函数在上单调递减.由此画出函数图象,如图所示,由图可知,的解集是.故选:D.【点睛】本题考查函数的奇偶性与单调性,属于基础题.8、C【解析】将问题转化为与图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【详解】由题设,将问题转化为与的图象有四个交点,,则在上递减且值域为;在上递增且值域为;在上递减且值域为,在上递增且值域为;的图象如下:所以时,与的图象有四个交点,不妨假设,由图及函数性质知:,易知:,,所以.故选:C9、A【解析】存在两个零点,等价于与的图像有两个交点,数形结合求解.【详解】存在两个零点,等价于与的图像有两个交点,在同一直角坐标系中绘制两个函数的图像:由图可知,当直线在处的函数值小于等于1,即可保证图像有两个交点,故:,解得:故选:A.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.10、C【解析】根据题意可得,代入面积公式,配方即可求出最大值.【详解】由,,则,所以,当时,取得最大值,此时.故选:C11、B【解析】当时,,它在上单调递增,所以.又为偶函数,所以它在上单调递减,因,故,选B.点睛:题设中的函数为偶函数,故根据其在上为增函数判断出,从而得到另一侧的单调性和,故可以判断出.12、D【解析】由题设在上存在一个增区间,结合、且,有必为的一个子区间,即可求的范围.【详解】由题设知:,,又,所以在上存在一个增区间,又,所以,根据题设知:必为的一个子区间,即,所以,即的最小值是.故选:D.【点睛】关键点点睛:结合题设条件判断出必为的一个子区间.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、##【解析】设出幂函数解析式,代入已知点坐标求解【详解】设,由已知得,所以,故答案为:14、【解析】设,时,方程只有一个根,不合题意,时,方程的根,就是函数的零点,方程的一个根在区间上,另一个根在区间上,且只需,即,解得,故答案为.15、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.16、2【解析】根据已知条件,利用近两年污染区域的面积由降至,求出指数函数关系的底数,再代入求得污染区域将至还需要的年数.【详解】设相隔为t年的两个年份湖泊污染区域的面积为和,则可设由题设知,,,,即,解得,假设需要x年能将至,即,,,解得所以使污染区域的面积继续降至还需要2年.故答案为:2三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)在,上单调递减,在,和,上单调递增【解析】(1)由图知,,最小正周期,由,求得的值,再将点,代入函数的解析式中,求出的值,即可;(2)由,,知,,再结合正弦函数的单调性,即可得解【小问1详解】解:由图知,,最小正周期,因为,所以,将点,代入函数的解析式中,得,所以,,即,,因为,所以,故函数的解析式为;【小问2详解】解:因为,,所以,,令,则,,因为函数在,上单调递减,在,和,上单调递增,令,得,令,得,令,得,所以在,上单调递减,在,和,上单调递增18、(1);(2)【解析】(1)利用诱导公式及商数关系得到结果;(2)利用两角和与差正切公式可得答案.【详解】(1)∵,则∴(2)∵∴解得:∴【点睛】本题考查了三角函数式的化简求值;熟练运用两角和与差的正切公式是解答的关键19、(1)详见解析;(2).【解析】(1)利用面面垂直的性质定理,可得平面,然后利用线面垂直的判定定理即证;(2)由题可得,进而可得,即得.【小问1详解】∵,平面底面ABCD,∴,平面底面ABCD=AD,底面ABCD,∴平面,平面,∴PD,又,∴,,∴底面;【小问2详解】设,M到底面ABCD的距离为,∵三棱锥的体积是四棱锥体积的,∴,又,,∴,故,又,所以.20、(Ⅰ)具有性质;(Ⅱ)或或【解析】(Ⅰ)具有性质.若存在,使得,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根.设,即在上有且只有一个零点.讨论的取值范围,结合零点存在定理,即可得到的范围试题解析:(Ⅰ)具有性质依题意,若存在,使,则时有,即,,.由于,所以.又因为区间内有且仅有一个,使成立,所以具有性质5分(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根设,即在上有且只有一个零点解法一:(1)当时,即时,可得在上为增函数,只需解得交集得(2)当时,即时,若使函数在上有且只有一个零点,需考虑以下3种情况:(ⅰ)时,在上有且只有一个零点,符合题意(ⅱ)当即时,需解得交集得(ⅲ)当时,即时,需解得交集得(3)当时,即时,可得在上为减函数只需解得交集得综上所述,若函数具有性质,实数的取值范围是或或14分解法二:依题意,(1)由得,,解得或同时需要考虑以下三种情况:(2)由解得(3)由解得不等式组无解(4)由解得解得综上所述,若函数具有性质,实数的取值范围是或或14分考点:1.零点存在定理;2.分类讨论的思想21、(1)(2)【解析】(1)由题意可知,对任意的,恒成立,利用参变量分离法结合指数函数的值域可求得实数的取值范围;(2)分析可知在定义域内单调递增,由“二倍函数”的定义可知关于的二次方程有两个不等的正根,可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:的定义域为,所以,恒成立,则恒成立,,,因此,实数的取值范围为.小问2详解】解:当时,因为内层函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论