2024届安徽许镇数学八年级第二学期期末复习检测试题含解析_第1页
2024届安徽许镇数学八年级第二学期期末复习检测试题含解析_第2页
2024届安徽许镇数学八年级第二学期期末复习检测试题含解析_第3页
2024届安徽许镇数学八年级第二学期期末复习检测试题含解析_第4页
2024届安徽许镇数学八年级第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽许镇数学八年级第二学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是()A.40 B.45 C.51 D.562.∠A的余角是70°,则∠A的补角是()A.20° B.70° C.110° D.160°3.下列不等式的变形中,不正确的是()A.若,则 B.若,则C.若,则 D.若,则4.定义一种新运算:当时,;当时,.若,则的取值范围是()A.或 B.或C.或 D.或5.如图,中,点是边的中点,交对角线于点,则等于()A. B. C. D.6.在ΔABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,不能判定ΔABC是直角三角形的是()A.∠A+∠B=90°C.a=1,b=3,c=10 D.7.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,乙从B地到A地需要()分钟A.12 B.14 C.18 D.208.已知为矩形的对角线,则图中与一定不相等的是()A. B. C. D.9.点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P’的坐标为()A. B. C. D.10.不能判定四边形ABCD是平行四边形的题设是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AD=BC,∠A=∠C D.AB∥CD,∠B=∠D11.下列二次根式中,属于最简二次根式的是A. B. C. D.12.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠1 C.x=2 D.x=﹣1二、填空题(每题4分,共24分)13.若把代数式化为的形式,其中、为常数,则______.14.若数使关于的不等式组,有且仅有三个整数解,则的取值范围是______.15.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B3,…,依此规律,则点A10的坐标是_____.16.要使分式的值为0,则x的值为____________.17.矩形的一边长是3.6㎝,两条对角线的夹角为60º,则矩形对角线长是___________.18.已知,则______三、解答题(共78分)19.(8分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.(1)判断四边形的形状,并说明理由,(2)若,求的长,20.(8分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.21.(8分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.(1)求证:四边形ABCD是平行四边形(2)若AC⊥BD,且AB=4,则四边形ABCD的周长为________.22.(10分)如图,在△ABC中,E点是AC的中点,其中BD=2,DC=6,BC=2,AD=,求DE的长.23.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A、B两点,AB=5,OA:OB=3:4.(1)求直线l的表达式;(2)点P是轴上的点,点Q是第一象限内的点.若以A、B、P、Q为顶点的四边形是菱形,请直接写出Q点的坐标.24.(10分)一个有进水管与出水管的容器,从某时刻开始8min内既进水又出水,在随后的4min内只进水不出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)(0≤x≤12)之间的关系如图所示:(1)求y关于x的函数解析式;(2)每分钟进水、出水各多少升?25.(12分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.26.如图,每个小正方形的边长为1,四边形的每个顶点都在格点上,且,.(1)请在图中补齐四边形,并求其面积;(2)判断是直角吗?请说明理由

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

解:根据定义,得∴解得:.故选C.2、D【解题分析】

先根据互余两角的和等于90°求出∠A的度数,再根据互补两角的和等于180°列式求解即可;或根据同一个角的补角比余角大90°进行计算.【题目详解】解:∵∠A的余角是70°,∴∠A=90°-70°=20°,∴∠A的补角是:180°-20°=160°;或∠A的补角是:70°+90°=160°.故选:A.【题目点拨】本题考查了余角与补角的求法,熟记互余两角的和等于90°,互补两角的和等于180°的性质是解题的关键.3、D【解题分析】

根据不等式的基本性质进行判断。【题目详解】A.∴,故A正确;B.,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;C.,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;D.,在不等式两边同时除以(-3)则不等号改变,∴,故D错误所以,选项D不正确。【题目点拨】主要考查了不等式的基本性质:1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。4、C【解题分析】

分3>x+2即x<1和3<x+2即x>1两种情况,根据新定义列出不等式求解可得.【题目详解】当3>x+2,即x<1时,3(x+2)+x+2>0,解得:x>−2,∴−2<x<1;当3<x+2,即x>1时,3(x+2)−(x+2)>0,解得:x>−2,∴x>1,综上,−2<x<1或x>1,故选:C.5、B【解题分析】

如图,证明AD∥BC,AD=BC;得到△DEF∽△BCF,进而得到;证明BC=AD=2DE,即可解决问题.【题目详解】四边形为平行四边形,;,;点是边的中点,,.故选B.【题目点拨】该题主要考查了平行四边形的性质、相似三角形的判定及其性质等几何知识点及其应用问题;牢固掌握平行四边形的性质、相似三角形的判定及其性质是关键.6、D【解题分析】

根据三角形内角和定理以及直角三角形的性质即可求出答案.【题目详解】A.∵∠A+∠B=90°,∠A+∠B+∠C=180°,∴∠C=90°B.∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴C.∵12+32=D.设a=1,b=2,c=2,∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.故选:D.【题目点拨】本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.7、A【解题分析】

根据题意,得到路程和甲的速度,然后根据相遇问题,设乙的速度为x,列出方程求解,然后即可求出乙需要的时间.【题目详解】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,∴甲的速度是:1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得:10x+16×=16,解得:x=,∴乙从B地到A地需要的时间为:(分钟);故选:A.【题目点拨】本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.8、D【解题分析】

解:A选项中,根据对顶角相等,得与一定相等;B、C项中无法确定与是否相等;D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1.故选:D9、A【解题分析】

根据已知点的坐标变换发现规律进行求解.【题目详解】根据题意得(2,0)变化后的坐标为(1,0);(2,4)变化后的坐标为(1,4);故P点(a,b)变化后的坐标为故选A.【题目点拨】此题主要考查坐标的变化,解题的关键是根据题意发现规律进行求解.10、C【解题分析】

根据平行四边形的判定,A、B、D均能判断是平行四边形,唯有C不能判定.【题目详解】因为平行四边形的判定方法有:两组对边分别相等的四边形是平行四边形,故B正确;一组对边平行且相等的四边形是平行四边形,故A正确;由AB∥CD,∠B=∠D,可求得∠A=∠C,根据两组对角分别相等的四边形是平行四边形可以判定,故D也可以判定.连接BD,利用“SSA”不能判断△ABD与△CDB,C不能判定四边形ABCD是平行四边形,故选C.【题目点拨】此题主要考查学生对平行四边形的判定的掌握情况.平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.11、A【解题分析】

最简二次根式满足的条件是:被开方数不含能开方的因数或因式;被开方数不能是小数或分数;分母中不能出现二次根式.【题目详解】根据最简二次根式满足的条件可得:是最简二次根式,故选A.【题目点拨】本题主要考查最简二次根式的定义,解决本题的关键是要熟练掌握满足最简二次根式的条件.12、A【解题分析】

根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【题目详解】由题意得,x-2≠0,解得,x≠2,故选A.【题目点拨】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.二、填空题(每题4分,共24分)13、-7【解题分析】

利用配方法把变形为(x-2)-9,则可得到m和k的值,然后计算m+k的值.【题目详解】x−4x−5=x−4x+4−4−5=(x−2)−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【题目点拨】此题考查配方法的应用,解题关键在于掌握运算法则.14、【解题分析】

先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m的范围.【题目详解】解:解不等式组得:由有且仅有三个整数解即:3,2,1.则:解得:【题目点拨】本题考查了一元一次不等式组,利用不等式的解得出关于m的不等式组是解题关键.15、(32,0)【解题分析】

根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,所以可求出从A到A3的后变化的坐标,再求出A1、A2、A3、A4、A5,得出A10即可.【题目详解】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,∵从A到A3经过了3次变化,∵45°×3=135°,1×()3=2.∴点A3所在的正方形的边长为2,点A3位置在第四象限.∴点A3的坐标是(2,﹣2);可得出:A1点坐标为(1,1),A2点坐标为(2,0),A3点坐标为(2,﹣2),A4点坐标为(0,﹣4),A5点坐标为(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),A9(16,16),A10(32,0).故答案为(32,0).【题目点拨】此题考查规律型:点的坐标,解题关键在于找到规律16、-2.【解题分析】

分式的值为零的条件是分子等于0且分母不等于0,【题目详解】因为分式的值为0,所以x+2=0且x-1≠0,则x=-2,故答案为-2.17、7.2cm或cm【解题分析】①边长3.6cm为短边时,

∵四边形ABCD为矩形,

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB=3.6cm,

∴AC=BD=2OA=7.2cm;

②边长3.6cm为长边时,

∵四边形ABCD为矩形

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB,BD=2OB,∠ABD=60°,

∴OB=AB=,∴BD=;故答案是:7.2cm或cm.18、34【解题分析】∵,∴=,故答案为34.三、解答题(共78分)19、(1)四边形为菱形,见解析;(2)【解题分析】

(1)根据已知矩形性质证明四边形为平行四边形,再根据折叠的性质证明,得出即可得出结论;(2)根据折叠特性设未知边,构造勾股定理列方程求解.【题目详解】解:四边形为菱形;理由如下:四边形为矩形,四边形为平行四边形由折叠的性质,则四边形为菱形,,.由得设.在,解得:,,.【题目点拨】此题考查了矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.20、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.【解题分析】试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).故答案为10;2.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.21、(1)证明见解析;(2)16.【解题分析】

(1)已知O是AC的中点,可得AO=CO.又因AD∥BC,根据平行线的性质可得∠DAO=∠BCO,再由∠AOD=∠COB,利用ASA即可判定ΔAOD≅△COB,由全等三角形的性质可得AD=BC,再由一组对边平行且相等的四边形为平行四边形即可判定四边形ABCD是平行四边形;(2)根据对角线互相垂直的平行四边形为菱形判定四边形ABCD为菱形,由此即可求得四边形ABCD的周长.【题目详解】(1)证明:∵O是AC的中点,∴AO=CO.∵AD∥BC

,∴∠DAO=∠BCO,又∵∠AOD=∠COB,∴ΔAOD≅△COB,∴AD=BC,又∵AD∥BC,∴四边形ABCD是平行四边形.(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∵AB=4,∴菱形ABCD的周长为16.【题目点拨】本题考查了平行四边形的判定及菱形的判定与性质,证明ΔAOD≅△COB是解决问题的关键.22、【解题分析】

根据勾股定理的逆定理求出∠BDC=90°,求出线段AC长,根据直角三角形斜边上中线性质求出即可.【题目详解】∵BD2+CD2=22+62=(2)2=BC2,∴△BDC为直角三角形,∠BDC=90°,在Rt△ADC中,∵CD=6,AD=2,∴AC2=(2)2+62=60,∴AC=2,∵E点为AC的中点,∴DE=AC=.【题目点拨】本题考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出△ADC是直角三角形是解此题的关键.23、(1)y=+4(2)(3,5)或(3,)【解题分析】

(1)首先根据已知条件以及勾股定理求得OA、OB的长度,即求得A、B的坐标,利用待定系数法即可求解;(2)分P在B点的上边和在B的下边两种情况画出图形进行讨论,求得Q的坐标.【题目详解】(1)∵OA:OB=3:4,AB=5,∴根据勾股定理,得OA=3,OB=4,∵点A、B在x轴、y轴上,∴A(3,0),B(0,4),设直线l表达式为y=kx+b(k≠0),∵直线l过点A(3,0),点B(0,4),∴,解得,∴直线l的表达式为y=+4;(2)如图,当四边形BP1AQ1是菱形时,则有BP1=AP1=AQ1,则有OP1=4-BP1,在Rt△AOP1中,有AP12=OP12+AO2,即AQ12=(4-AQ1)2+32,解得:AQ1=,所以Q1的坐标为(3,);当四边形BP2Q2A是菱形时,则有BP2=AQ2=AB=5,所以Q2的坐标为(3,5),综上所述,Q点的坐标是(3,5)或(3,).【题目点拨】本题考查了一次函数的性质、勾股定理、菱形的判定与性质,熟练掌握待定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论