2024届安徽定远高复学校高二数学第二学期期末学业水平测试试题含解析_第1页
2024届安徽定远高复学校高二数学第二学期期末学业水平测试试题含解析_第2页
2024届安徽定远高复学校高二数学第二学期期末学业水平测试试题含解析_第3页
2024届安徽定远高复学校高二数学第二学期期末学业水平测试试题含解析_第4页
2024届安徽定远高复学校高二数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽定远高复学校高二数学第二学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点的直角坐标化成极坐标为()A. B. C. D.2.的展开式中各项系数之和为,设,则()A. B. C. D.3.已知集合,则()A. B.C. D.4.设函数,则()A.为的极大值点 B.为的极小值点C.为的极大值点 D.为的极小值点5.已知为虚数单位,复数,则复数的虚部为A. B. C. D.6.已知函数,则函数的单调递增区间是()A.和 B.和C.和 D.7.设全集,,,则等于()A. B. C. D.8.甲、乙独立地解决同一数学问题,甲解决这个问题的概率是1.8,乙解决这个问题的概率是1.6,那么其中至少有1人解决这个问题的概率是()A.1.48 B.1.52 C.1.8 D.1.929.设随机变量ξ~B(2,p), η~B(4,p),若P(ξ≥1)=5A.1127 B.3281 C.6510.已知集合,则()A. B. C. D.11.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量,则所有可能取值的个数是()A.5 B.9 C.10 D.2512.如图,网格纸上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中第三项的系数为_________。14.已知,,当取得最小值时,__________.15.已知函数有六个不同零点,且所有零点之和为3,则的取值范围为__________.16.设F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点,过F1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点为坐标原点椭圆的右焦点为,离心率为,点分别是椭圆的左顶点、上顶点,的边上的中线长为.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点直线分别交直线于两点,求.18.(12分)已知函数.(1)讨论的单调性;(2)当时,若恒成立,求的取值范围.19.(12分)在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:几何证明选讲极坐标与参数方程不等式选讲合计男同学124622女同学081220合计12121842(1)在统计结果中,如果把几何证明选讲和极坐标与参数方程称为“几何类”,把不等式选讲称为“代数类”,我们可以得到如下2×2列联表.几何类代数类合计男同学16622女同学81220合计241842能否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?(2)在原始统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选答题的同学中随机选出7名同学进行座谈.已知这名学委和2名数学课代表都在选做“不等式选讲”的同学中.①求在这名学委被选中的条件下,2名数学课代表也被选中的概率;②记抽取到数学课代表的人数为,求的分布列及数学期望.下面临界值表仅供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)设关于的不等式的解集为函数的定义域为.若“”为假命题,“”为真命题,求实数的取值范围.21.(12分)已知定义域为的函数是奇函数.(1)求的值;(2)已知在定义域上为减函数,若对任意的,不等式为常数)恒成立,求的取值范围.22.(10分)已知过点的直线l的参数方程是为参数以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程式为.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C交于两点A,B,且,求实数m的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

分别求得极径和极角,即可将直角坐标化为极坐标.【题目详解】由点M的直角坐标可得:,点M位于第二象限,且,故,则将点的直角坐标化成极坐标为.本题选择D选项.【题目点拨】本题主要考查直角坐标化为极坐标的方法,意在考查学生的转化能力和计算求解能力.2、B【解题分析】

先求出的值,再根据,利用通项公式求出的值.【题目详解】令,可得的展开式中各项系数之和为,,设,则.故选:B【题目点拨】本题考查了二项式定理求多项式的系数和,二项式定理展开式的通项公式,需熟记公式,属于基础题.3、D【解题分析】,所以,故选B.4、D【解题分析】试题分析:因为,所以.又,所以为的极小值点.考点:利用导数研究函数的极值;导数的运算法则.点评:极值点的导数为0,但导数为0的点不一定是极值点.5、B【解题分析】由题意得,所以复数的虚部为.选B.6、C【解题分析】

先求出函数的定义域,再求导,根据导数大于0解得x的范围,继而得到函数的单调递增区间.【题目详解】函数f(x)=x2-5x+2lnx的定义域是(0,+∞),令f′(x)=2x-5+==>0,解得0<x<或x>2,故函数f(x)的单调递增区间是,(2,+∞).故选C【题目点拨】本题考查了导数和函数的单调性的关系,易错点是注意定义域,属于基础题.7、B【解题分析】

直接利用补集与交集的运算法则求解即可.【题目详解】解:∵集合,,,由全集,.故选:B.【题目点拨】本题考查了交、并、补集的混合运算,是基础知识的考查.8、D【解题分析】1-1.2×1.4=1.92,选D项.9、A【解题分析】

利用二项分布概率计算公式结合条件Pξ≥1=59计算出【题目详解】由于ξ~B2,p,则Pξ≥1=1-P所以,η~B4,1=1127【题目点拨】本题考查二项分布概率的计算,解题的关键在于找出基本事件以及灵活利用二项分布概率公式,考查计算能力,属于中等题。10、A【解题分析】

先求得集合的元素,由此求得两个集合的交集.【题目详解】依题意,故,故选A.【题目点拨】本小题主要考查两个集合的交集的求法,考查对数运算,属于基础题.11、B【解题分析】号码之和可能为2,3,4,5,6,7,8,9,10,共9种.考点:离散型随机变量.12、D【解题分析】

由三视图还原出原几何体,然后计算其表面积.【题目详解】由三视图知原几何体是一个圆锥里面挖去一个圆柱,尺寸见三视图.圆锥的母线长为,.故选:D.【题目点拨】本题考查组合体的表面积,解题关键是由三视图还原出原几何体,确定几何体的结构.二、填空题:本题共4小题,每小题5分,共20分。13、6【解题分析】

利用二项展开式的通项公式,当时得到项,再抽出其系数.【题目详解】,当时,,所以第三项的系数为,故填.【题目点拨】本题考查二项展开式的简单运用,考查基本运算能力,注意第3项不是,而是.14、【解题分析】

根据均值不等式知,,即,再由即可求解,注意等号成立的条件.【题目详解】(当且仅当等号成立),(当且仅当等号成立),(当且仅当等号成立),.故答案为.【题目点拨】本题主要考查了均值不等式,不等式等号成立的条件,属于中档题.15、【解题分析】根据题意,有,于是函数关于对称,结合所有的零点的平均数为,可得,此时问题转化为函数,在上与直线有个公共点,此时,当时,函数的导函数,于是函数单调递增,且取值范围是,当时,函数的导函数,考虑到是上的单调递增函数,且,于是在上有唯一零点,记为,进而函数在上单调递减,在上单调递增,在处取得极小值,如图:接下来问题的关键是判断与的大小关系,注意到,,函数,在上与直线有个公共点,的取值范围是,故答案为.16、10【解题分析】

结合双曲线的定义,求出a的值,再由AF2=6,BF2【题目详解】结合双曲线的定义,AF又AF1+BF即a=6-2又AF2=6,BF2所以F1F2所以双曲线C的离心率为102故答案为:10【题目点拨】本题主要考查双曲线的定义和简单几何性质,考查离心率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)0.【解题分析】

(1)首先根据题意列出方程组,再解方程即可.(2)首先设直线的方程为:,,,则,,联立方程,利用根系关系结合三点共线即可求出.【题目详解】(1)如图所示由题意得为直角三角形,且上的中线长为,所以.则,解得.所以椭圆的标准方程为:.(2)由题意,如图设直线的方程为:,,,则,,联立方程化简得.则.由三点共线易得,化简得,同理可得..【题目点拨】本题第一问考查椭圆的标准方程,第二问考查直线与椭圆的位置关系,同时考查学生的计算能力,属于中档题.18、(1)见解析(2)【解题分析】

(1)先求得函数的导函数,然后根据三种情况,讨论的单调性.(2)由题可知在上恒成立,构造函数,利用导数研究的单调性和最值,对分成两种进行分类讨论,根据在上恒成立,求得的取值范围.【题目详解】(1),当时,令,得,令,得或,所以在上单调递增,在上单调递减.当时,在上单调递增.当时,令,得,令,得或,所以在上单调递减,在上单调递增.(2)由题可知在上恒成立,令,则,令,则,所以在上为减函数,.当时,,即在上为减函数,则,所以,即,得.当时,令,若,则,所以,所以,又,所以在上有唯一零点,设为,在上,,即单调递增,在上,,即单调递减,则的最大值为,所以恒成立.由,得,则.因为,所以,由,得.记,则,所以在上是减函数,故.综上,的取值范围为.【题目点拨】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.19、(1)答案见解析;(2)①.;②.答案见解析.【解题分析】分析:(1)由题意知K2的观测值k≈4.582>3.841,则有95%的把握认为选做“几何类”或“代数类”与性别有关.(2)①由题意结合条件概率计算公式可知在学委被选中的条件下,2名数学课代表也被选中的概率为;②由题意知X的可能取值为0,1,2.由超几何分布计算相应的概率值可得其分布列,然后计算其数学期望为E(X)=.详解:(1)由题意知K2的观测值k=≈4.582>3.841,所以有95%的把握认为选做“几何类”或“代数类”与性别有关.(2)①由题可知在选做“不等式选讲”的18名学生中,要选取3名同学,令事件A为“这名学委被选中”,事件B为“两名数学课代表被选中”,则,,②由题意知X的可能取值为0,1,2.依题意P(X=0)=,P(X=1)==,P(X=2)=,则其分布列为:所以E(X)=0×+1×+2×=.点睛:本题主要考查离散型随机变量的分布列和数学期望,独立性检验的数学思想等知识,意在考查学生的转化能力和计算求解能力.20、或.【解题分析】试题分析:先分别求出命题和命题为真命题时的取值范围,然后根据“”为假命题,“”为真命题,得出一真一假,再求出的取值范围.试题解析:由不等式的解集为,得;由函数的定义域为,当时,不合题意,∴,解得.∵“”为假命题,“”为真命题,∴一真一假,∴或∴或.点睛:由含逻辑连结词的命题的真假求参数的取值范围的方法:(1)求出当命题为真命题时所含参数的取值范围;(2)判断命题的真假性;(3)根据命题的真假情况,利用集合的交集和补集的运算,求解参数的取值范围.21、解:(1)因为是奇函数,所以=0,即………3(2)由(1)知,………5设,则.因为函数y=2在R上是增函数且,∴>0.又>0,∴>0,即,∴在上为减函数.另法:或证明f′(x)0………9(3)因为是奇函数,从而不等式等价于,………3因为为减函数,由上式推得.即对一切有,从而判别式………13【解题分析】定义域为R的奇函数,得b=1,在代入1,-1,函数值相反得a;,通常用函数的单调性转化为自变量的大小关系.(1)是奇函数,,┈┈┈┈┈┈┈┈┈┈┈┈2分即┈┈┈┈┈┈┈┈┈┈┈┈2分┈┈┈┈┈┈┈┈┈┈┈┈2分┈┈┈┈┈┈┈┈┈┈┈┈1分(2)由(1)知由上式易知在R上为减函数.┈┈┈┈┈┈┈┈┈┈┈┈2分又因为为奇函数,从而不等式,等价于┈┈┈┈┈┈┈┈┈┈┈┈2分为减函数┈┈┈┈┈┈┈┈┈┈┈┈1分即对一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论