版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届南通市高二数学第二学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.4名学生报名参加语、数、英兴趣小组,每人选报1种,则不同方法有()A.种 B.种 C.种 D.种2.在三棱锥P-ABC中,,,,若过AB的平面将三棱锥P-ABC分为体积相等的两部分,则棱PA与平面所成角的正弦值为()A. B. C. D.3.甲、乙两位同学将高三6次物理测试成绩做成如图所示的茎叶图加以比较(成绩均为整数满分100分),乙同学对其中一次成绩记忆模糊,只记得成绩不低于90分且不是满分,则甲同学的平均成绩超过乙同学的平均成绩的概率为()A. B. C. D.4.设函数是定义在上的奇函数,且当时,,记,,,则的大小关系为()A. B. C. D.5.设,,,则大小关系是()A. B.C. D.6.过点作曲线的切线,则切线方程为()A. B.C. D.7.目前,国内很多评价机构经过反复调研论证,研制出“增值评价”方式。下面实例是某市对“增值评价”的简单应用,该市教育评价部门对本市所高中按照分层抽样的方式抽出所(其中,“重点高中”所分别记为,“普通高中”所分别记为),进行跟踪统计分析,将所高中新生进行了统的入学测试高考后,该市教育评价部门将人学测试成绩与高考成绩的各校平均总分绘制成了雷达图.点表示学校入学测试平均总分大约分,点表示学校高考平均总分大约分,则下列叙述不正确的是()A.各校人学统一测试的成绩都在分以上B.高考平均总分超过分的学校有所C.学校成绩出现负增幅现象D.“普通高中”学生成绩上升比较明显8.函数的最小正周期是,若将该函数的图象向右平移个单位长度后得到的函数图象关于点对称,则函数的解析式为A. B.C. D.9.已知双曲线的一个焦点为,一条渐近线的斜率为,则该双曲线的方程为()A. B. C. D.10.在二项式的展开式中,含的项的系数是().A. B. C. D.11.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,,,…,中0的个数不少于1的个数.若,则不同的“规范01数列”共有()A.14个 B.13个 C.15个 D.12个12.抛掷甲、乙两颗骰子,若事件A:“甲骰子的点数大于4”;事件B:“甲、乙两骰子的点数之和等于7”,则的值等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则展开式中的系数为__________.14.正四棱柱中,,则与平面所成角的正弦值为__________.15.正态分布三个特殊区间的概率值,,,若随机变量满足,则____.16.已知、满足约束条件,若目标函数的最大值为13,则实数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题函数是上的奇函数,命题函数的定义域和值域都是,其中.(1)若命题为真命题,求实数的值;(2)若“且”为假命题,“或”为真命题,求实数的取值范围.18.(12分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为,(为参数),圆的标准方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求直线和圆的极坐标方程;(2)若射线与直线的交点为,与圆的交点为,且点恰好为线段的中点,求的值.19.(12分)已知函数.(1)若在上的最大值是最小值的2倍,解不等式;(2)若存在实数使得成立,求实数的取值范围.20.(12分)已知数列,…的前项和为.(1)计算的值,根据计算结果,猜想的表达式;(2)用数学归纳法证明(1)中猜想的表达式.21.(12分)球O的半径为R,A﹑B﹑C在球面上,A与B,A与C的球面距离都为,B与C的球面距离为,求球O在二面角B-OA-C内的部分的体积.22.(10分)已知向量m=(3sin(1)若m⋅n=1(2)记f(x)=m⋅n在ΔABC中角A,B,C的对边分别为a,b,c,且满足(2a-c)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
直接根据乘法原理计算得到答案.【题目详解】每个学生有3种选择,根据乘法原理共有种不同方法.故选:.【题目点拨】本题考查了乘法原理,属于简单题.2、A【解题分析】
由题构建图像,由,想到取PC中点构建平面ABD,易证得平面ABD,所以PA与平面所成角即为,利用正弦函数定义,得答案.【题目详解】如图所示,取PC中点为D连接AD,BD,因为过AB的平面将三棱锥P-ABC分为体积相等的两部分,所以即为平面ABD;又因为,所以,又,所以,且,所以平面ABD,所以PA与平面所成角即为,因为,所以,所以.故选:A【题目点拨】本题考查立体几何中求线面角,应优先作图,找到或证明到线面垂直,即可表示线面角,属于较难题.3、C【解题分析】
首先求得甲的平均数,然后结合题意确定污损的数字可能的取值,最后利用古典概型计算公式求解其概率值即可.【题目详解】由题意可得:,设被污损的数字为x,则:,满足题意时,,即:,即x可能的取值为,结合古典概型计算公式可得满足题意的概率值:.故选C.【题目点拨】本题主要考查茎叶图的识别与阅读,平均数的计算方法,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力.4、A【解题分析】分析:根据x>0时f(x)解析式即可知f(x)在(0,+∞)上单调递增,由f(x)为奇函数即可得出,然后比较的大小关系,根据f(x)在(0,+∞)上单调递增即可比较出a,b,c的大小关系.详解:x>0时,f(x)=lnx;∴f(x)在(0,+∞)上单调递增;∵f(x)是定义在R上的奇函数;=;,;∴;∴;∴a<b<c;即c>b>a.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.5、A【解题分析】
根据三个数的特征,构造函数,求导,判断函数的单调性,利用函数的单调性可以判断出的大小关系.【题目详解】解:考查函数,则,在上单调递增,,,即,,故选A.【题目点拨】本题考查了通过构造函数,利用函数的单调性判断三个数大小问题,根据三个数的特征构造函数是解题的关键.6、C【解题分析】
设出切点坐标求出原函数的导函数,得到函数在时的导数值,即切线的斜率,然后由直线方程的点斜式得切线方程,代入已知点的坐标后求出切点的坐标,则切线方程可求.【题目详解】由,得,
设切点为
则,
∴切线方程为,
∵切线过点,
∴−ex0=ex0(1−x0),
解得:.
∴切线方程为,整理得:.故选C..【题目点拨】本题考查了利用导数研究过曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.7、B【解题分析】
依次判断每个选项的正误,得到答案.【题目详解】A.各校人学统一测试的成绩都在分以上,根据图像知,正确B.高考平均总分超过分的学校有所,根据图像知,只有ABC三所,错误C.学校成绩出现负增幅现象,根据图像,高考成绩低于入学测试,正确D.“普通高中”学生成绩上升比较明显,根据图像,“普通高中”高考成绩都大于入学测试,正确.故答案选B【题目点拨】本题考查了雷达图的知识,意在考查学生的应用能力和解决问题的能力.8、D【解题分析】
先根据函数的最小正周期求出,再求出图像变换后的解析式,利用其对称中心为求出的值即得解.【题目详解】因为函数的最小正周期是,所以,解得.所以.将该函数的图象向右平移个单位长度后,所得图象对应的函数解析为.由题得.因为函数的解析式.故选D.【题目点拨】本题主要考查三角函数的图像和性质,考查三角函数的图像变换,意在考查学生对这些知识的理解掌握水平,属于基础题.9、C【解题分析】
根据双曲线一个焦点可以求出,再根据一条渐近线的斜率为,可求出的关系,最后联立,解方程求出,求出方程即可.【题目详解】因为双曲线一个焦点的坐标为,所以,一条渐近线的斜率为,所以有,而,所以,因此有.故选:C【题目点拨】本题考查了求双曲线方程,考查了双曲线的渐近线方程,考查了数学运算能力.10、C【解题分析】
利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【题目详解】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.11、A【解题分析】分析:由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.详解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故答案为:A.点睛:本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏.12、C【解题分析】本小题属于条件概率所以事件B包含两类:甲5乙2;甲6乙1;所以所求事件的概率为二、填空题:本题共4小题,每小题5分,共20分。13、448.【解题分析】由题意可得:,则展开式的通项公式为:,令可得:,则的系数为:.14、【解题分析】分析:建立空间直角坐标系,求出平面的法向量,利用向量法即可求AD1与面BB1D1D所成角的正弦值.详解:以D为原点,DA,DC,DD1分别为x轴,y轴,z轴,建立如图所示空间直角坐标系D﹣xyz.设AB=1,则D(1,1,1),A(1,1,1),B(1,1,1),C(1,1,1),D1(1,1,2),A1(1,1,2),B1(1,1,2),C1(1,1,2).设AD1与面BB1D1D所成角的大小为θ,=(﹣1,1,2),设平面BB1D1D的法向量为=(x,y,z),=(1,1,1),=(1,1,2),则x+y=1,z=1.令x=1,则y=﹣1,所以=(1,﹣1,1),sinθ=|cos<,>|=,所以AD1与平面BB1D1D所成角的正弦值为.故答案为.点睛:这个题目考查了空间中的直线和平面的位置关系.求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.15、0.1359【解题分析】
根据正态分布,得出其均值和方差的值,根据的原则和正态曲线的对称性可得.【题目详解】由题意可知,,,故答案为【题目点拨】本题考查正态分布曲线的对称性和的原则,属于基础题.16、1【解题分析】
在平面直角坐标系内,画出不等式组所表示的平面区域.平移直线,找到使直线在纵轴上的截距最大时,所经过的点坐标,把这个点的坐标代入目标函数解析式中,可以求出的值.【题目详解】在平面直角坐标系内,画出不等式组所表示的平面区域如下图所示:平移直线,∵,所以当直线经过点时,直线在纵轴上的截距最大,解方程组:,把点的坐标,代入目标函数中,,解得.故答案为:1【题目点拨】本题考查了已知目标函数的最值求参数问题,正确画出不等式组所表示的平面区域是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】分析:(1)根据奇函数定义得f(-x)+f(x)=0,解得实数的值;(2)根据函数单调性得转化为对应一元二次方程有两个大于1的不相等实根,利用实根分布解得k的取值范围,由“p且q”为假命题,“p或q”为真命题,得命题p和q中有且仅有一个为真命题,根据真假列方程组解得实数的取值范围.详解:(1)若命题p为真命题,则f(-x)+f(x)=0,即,化简得对任意的x∈R成立,所以k=1.(2)若命题q为真命题,因为在[a,b]上恒成立,所以g(x)在[a,b]上是单调增函数,又g(x)的定义域和值域都是[a,b],所以所以a,b是方程的两个不相等的实根,且1<a<b.即方程有两个大于1的实根且不相等,记h(x)=k2x2-k(2k-1)x+1,故,解得,所以k的取值范围为.因为“p且q”为假命题,“p或q”为真命题,所以命题p和q中有且仅有一个为真命题,即p真q假,或p假q真.所以或所以实数k的取值范围为.点睛:以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p∨q”“p∧q”“非p”形式命题的真假,列出含有参数的不等式(组)求解即可.18、(1).(2)【解题分析】分析:(1)将直线的参数方程利用代入法消去参数,可得直线的直角坐标方程,利用,可得直线的极坐标方程,圆的标准方程转化为一般方程,两边同乘以利用利用互化公式可得圆的极坐标方程;(2)联立可得,根据韦达定理,结合中点坐标公式可得,将代入,解方程即可得结果.详解:(1)在直线的参数方程中消去可得,,将,代入以上方程中,所以,直线的极坐标方程为.同理,圆的极坐标方程为.(2)在极坐标系中,由已知可设,,.联立可得,所以.因为点恰好为的中点,所以,即.把代入,得,所以.点睛:消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.19、(Ⅰ);(Ⅱ).【解题分析】分析:(1)根据在上的最大值是最小值的2倍求出a的值,再解不等式.(2)先分离参数得,再求右边式子的最小值,得到a的取值范围.详解:(1)∵,∴,,∴,解得,不等式,即,解得或,故不等式的解集为.(2)由,得,令,问题转化为,又故,则,所以实数的取值范围为.点睛:(1)本题主要考查不等式的解法和求绝对值不等式的最值,意在考查学生对这些基础知识的掌握能力.(2)本题易错,得到,问题转化为,不是转化为,因为它是存在性问题.20、(1),(2)见解析【解题分析】分析:(1)计算可求得,由此猜想的表达式;
(2)利用数学归纳法,先证明当时,等式成立,再假设当时,等式成立,即,去证明当时,等式也成立即可.详解:(I)猜想(II)①当时,左边=,右边=,猜想成立.②假设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 配电设备改造工程
- 2024年高中语文 第五单元 写作任务指导-学写演讲稿教案 新人教版必修下册
- 2024-2025学年高中数学 第五章 三角函数 5.2.1 三角函数的概念 第2课时 三角函数的性质教案 新人教A版必修第一册
- 湖南省株洲景炎学校七年级地理上册 2.3 世界的地形教案 湘教版
- 八年级生物上册 第五单元 第四章 第二节《细菌》教案 (新版)新人教版
- 总体交通规划设计合同(2篇)
- 雨棚使用年限合同(2篇)
- 汉字课件 博客
- 故事坐井观天课件
- 寒号鸟课件讲解
- 煤气柜设计安全要求
- 采购管理流程和采购工作流程
- 数学专业参考书整理推荐
- DB65T 3952-2016反恐怖防范设置规范 学校
- 土力学地基基础电子书
- 《化镍金之腐蚀》
- 继承和发扬中国革命道德
- 《品人录》读书笔记思维导图PPT模板下载
- 《把数学画出来 小学画数学教学实践手册》读书笔记思维导图
- 【个人简历】求职简约风PPT模板
- 家禽类完整版
评论
0/150
提交评论