2024届内蒙古赤峰市、呼和浩特市校际联考高二数学第二学期期末复习检测试题含解析_第1页
2024届内蒙古赤峰市、呼和浩特市校际联考高二数学第二学期期末复习检测试题含解析_第2页
2024届内蒙古赤峰市、呼和浩特市校际联考高二数学第二学期期末复习检测试题含解析_第3页
2024届内蒙古赤峰市、呼和浩特市校际联考高二数学第二学期期末复习检测试题含解析_第4页
2024届内蒙古赤峰市、呼和浩特市校际联考高二数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古赤峰市、呼和浩特市校际联考高二数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若圆锥的高等于底面直径,侧面积为,则该圆锥的体积为A. B. C. D.2.4名学生报名参加语、数、英兴趣小组,每人选报1种,则不同方法有()A.种 B.种 C.种 D.种3.的展开式中,的系数是()A.30 B.40 C.-10 D.-204.(2-x)(2x+1)6的展开式中x4的系数为()A. B.320 C.480 D.6405.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取同学乙猜:刘云被清华大学录取,张熙被北京大学录取同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对那么曾玉、刘云、李梦、张熙四人被录取的大小可能是()A.北京大学、清华大学、复旦大学、武汉大学B.武汉大学、清华大学、复旦大学、北京大学C.清华大学、北京大学、武汉大学、复旦大学D.武汉大学、复旦大学、清华大学、北京大学6.函数f(x)=ln(A. B. C. D.7.由0,1,2,3组成无重复数字的四位数,其中0与2不相邻的四位数有A.6个 B.8个 C.10个 D.12个8.执行如图程序框图,若输入的,分别为12,20,则输出的()A.2 B.3 C.4 D.59.已知定义域为的奇函数,当时,满足,则()A. B. C. D.10.把边长为的正方形沿对角线折起,使得平面⊥平面,形成三棱锥的正视图与俯视图如图所示,则侧视图的面积为()A. B.C. D.11.已知向量,,则()A. B. C. D.12.已知数列an:12,122,222,32①210-1210是an的第2036项;②存在常数M,使得Sn<M恒成立;③其中正确的序号是()A.①③ B.①④ C.①③④ D.②③④二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于两点,若是以为直角顶点的等腰三角形,则的面积为__________.14.椭圆(为参数)的焦距为________.15.某城市街区如下图所示,其中实线表示马路,如果只能在马路上行走,则从点到点的最短路径的走法有___种.16.某校从7名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案共有____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列中,,.(1)写出的值,猜想数列的通项公式;(2)用数学归纳法证明(1)中你的结论.18.(12分)在中,内角,,的对边分别为,,,且,,.(Ⅰ)求及边的值;(Ⅱ)求的值.19.(12分)已知函数f(x)=sin(1)若fx在0,π2(2)若a=1,g(x)=f(x)+ex且gx20.(12分)在正四棱锥P-BCD中,正方形ABCD的边长为32,高OP=6,E是侧棱PD上的点且PE=13PD,F是侧棱PA上的点且PF=12(1)求平面EFG的一个法向量n;(2)求直线AG与平面EFG所成角θ的大小;(3)求点A到平面EFG的距离d.21.(12分)已知.(1)讨论的单调性;(2)若,且在区间上的最小值为,求的值.22.(10分)如图,在中,角,,的对边分别为,,,且.(1)求的大小;(2)若,为外一点,,,求四边形面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

先设底面半径,然后根据侧面积计算出半径,即可求解圆锥体积.【题目详解】设圆锥的底面半径为,则高为,母线长;又侧面积,所以,所以,故选:B.【题目点拨】本题考查圆锥的侧面积公式应用以及体积的求解,难度一般.圆锥的侧面积公式:,其中是底面圆的半径,是圆锥的母线长.2、B【解题分析】

直接根据乘法原理计算得到答案.【题目详解】每个学生有3种选择,根据乘法原理共有种不同方法.故选:.【题目点拨】本题考查了乘法原理,属于简单题.3、B【解题分析】

通过对括号展开,找到含有的项即可得到的系数.【题目详解】的展开式中含有的项为:,故选B.【题目点拨】本题主要考查二项式定理系数的计算,难度不大.4、B【解题分析】,展开通项,所以时,;时,,所以的系数为,故选B.点睛:本题考查二项式定理.本题中,首先将式子展开得,再利用二项式的展开通项分别求得对应的系数,则得到问题所要求的的系数.5、D【解题分析】

推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案.【题目详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学(另外武汉大学、清华大学、北京大学、复旦大学也满足).故选:.【题目点拨】本题考查了逻辑推理,意在考查学生的推理能力.6、C【解题分析】因为fx=lnx2-4x+4x-23=lnx-22x-23,所以函数fx的图象关于点(2,0)对称,7、B【解题分析】分析:首先求由0,1,2,3组成无重复数字的四位数:先排千位数,有种排法,再排另外3个数,有种排法,利用乘法原理能求出组成没有重复数字的四位数的个数;然后求数字0,2相邻的情况:,先把0,2捆绑成一个数字参与排列,再减去0在千位的情况,由此能求出其中数字0,2相邻的四位数的个数.最后,求得0与2不相邻的四位数详解:由数字0,1,2,3组成没有重复数字的四位数有:.

其中数字0,2相邻的四位数有:则0与2不相邻的四位数有。故选B点睛:本题考查排列数的求法,考查乘法原理、排列、捆绑法,间接法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.8、C【解题分析】

由循环结构的特点,先判断,再执行,分别计算当前的值,即可得出结论.【题目详解】解:由,则.

由,则.

由,则.

由,则输出.

故选:C.【题目点拨】本题考查了算法和程序框图的应用问题,也考查了古代数学文化的应用问题,是基础题.9、D【解题分析】分析:通过计算前几项,可得n=3,4,…,2018,数列以3为周期的数列,计算可得所求和.详解:定义域为R的奇函数f(x),可得f(﹣x)=﹣f(x),当x>0时,满足,可得x>时,f(x)=f(x﹣3),则f(1)=﹣log25,f(2)=f(﹣1)=﹣f(1)=log25,f(3)=f(0)=0,f(4)=f(1)=﹣log25,f(5)=f(2)=f(﹣1)=﹣f(1)=log25,f(6)=f(3)=f(0)=0,f(7)=f(4)=f(1)=﹣log25,f(8)=f(2)=f(﹣1)=﹣f(1)=log25,…f(1)+f(2)+f(3)+…+f(2020)=﹣log25+log25+(0﹣log25+log25)×672=0,故选:D.点睛:归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.10、C【解题分析】取BD的中点E,连结CE,AE,∵平面ABD⊥平面CBD,∴CE⊥AE,∴三角形直角△CEA是三棱锥的侧视图,∵BD=,∴CE=AE=,∴△CEA的面积S=××=,故选C.11、A【解题分析】

先求出的坐标,再根据向量平行的坐标表示,列出方程,求出.【题目详解】由得,解得,故选A.【题目点拨】本题主要考查向量的加减法运算以及向量平行的坐标表示.12、B【解题分析】

找出数列an的规律:分母为2k的项有2k-1项,并将这些项排成杨辉三角形式的数阵,使得第k有2k-1项,每项的分母均为2k,并计算出每行各项之和b【题目详解】由题意可知,数列an的规律为:分母为2k的项有2k-1项,将数列an中的项排成杨辉三角数阵,且使得第k12对于命题①,210-1210位于数阵第21对于命题②,数阵中第k行各项之和为bk,则b且数列bk的前kTk当k→+∞时,Tk→+∞,因此,不存在正数M,使得对于命题③,易知第9行最后一项位于数列an21第10行最后一项位于数列an的项数为2036,且1013<2019<2036则a2019位于数阵第10行第1006项(即2019-1013=1006所以,S=1023由①知,S2036=T则恰好满足Sn>1019的项an位于第11则有T10+1由于64×63=4032,64×65=4160,则63×64<4096<64×65,∴m=64,因此,满足Sn>1019的最小正整数故选:B.【题目点拨】本题考查归纳推理,考查与数列相关的知识,关键要找出数列的规律,在解题时可以将规律转化为杨辉三角来处理,在做题过程中找出项与数阵中相对应的位置,综合性较强,属于难题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设,根据双曲线的定义,有,即.,,故三角形面积为.点睛:本题主要考查双曲线的定义,考查直线与圆锥曲线的位置关系,考查数形结合的数学思想方法和化归与转化的数学思想方法.解答直线与圆锥曲线位置关系题目时,首先根据题意画出曲线的图像,然后结合圆锥曲线的定义和题目所给已知条件来求解.利用题目所给等腰直角三角形,结合定义可求得直角三角形的边长,由此求得面积.14、1【解题分析】

根据题意,将椭圆的参数方程变形为普通方程,据此可得a、b的值,计算可得c的值,由椭圆的几何性质分析可得答案.【题目详解】解:根据题意,椭圆的参数方程为(θ为参数),则其标准方程为y1=1,其中a,b=1,则c1,则椭圆的焦距1c=1;故答案为:1.【题目点拨】本题考查椭圆的参数方程,椭圆简单的几何性质,关键是将椭圆的参数方程变形为普通方程.15、7.【解题分析】分析:根据题意,从A到B的最短路程,只能向左、向下运动,将原问题转化为排列、组合问题,注意图中有空格,注意排除,计算可得答案.详解:根据题意,从A到B的最短路程,只能向左、向下运动;

从A到B,最短的路程需要向下走2次,向右走3次,即从5次中任取2次向下,剩下3次向右,有种情况,但图中有空格,故是方法数为中

故答案为:7.点睛:本题考查排列、组合的应用,解题的关键将圆问题转化为排列、组合问题,由分步计数原理计算得到答案.16、264【解题分析】根据题意,分两步进行,第一步,先选四名老师,又分两类:①甲去,则丙一定去,乙一定不去,有种不同选法,②甲不去,则丙一定不去,乙可能去也可能不去,有种不同选法,则不同的选法有6+5=11种第二步,四名老师去4个边远地区支教,有最后,由分步计数原理,可得共有11×24=264种方法.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,猜想(2)见解析【解题分析】

(1)依递推公式计算,并把各分子都化为3,可归纳出;(2)用数学归纳法证明即可.【题目详解】解:(1),,∴,,,猜想(2)用数学归纳法证明如下:①当时,由知猜想成立;②假设时,猜想成立,即则∴时,猜想成立,根据①②可知,猜想对一切正整数都成立.【题目点拨】本题考查归纳推理,考查数学归纳法,属于基础题.在用数学归纳法证明时,在证明时的命题时一定要用到时的归纳假设,否则不是数学归纳法.18、(1),或;(2).【解题分析】分析:(1)根据正弦定理和二倍角公式,求得,在利用余弦定理求得边长的值;(2)由二倍角公式求得,再利用三角恒等变换求得的值.详解:(Ⅰ)中,,,∴,又,∴,,解得;又,,,解得或;(Ⅱ)∵,∴,∴;∴.点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.19、(1)a>0(2)见解析【解题分析】

(1)求出函数y=fx的导数,对实数a分a≤0和a>0两种情况讨论,结合导数的单调性、零点存在定理以及导数符号来判断,于此得出实数a(2)利用分析法进行转化证明,构造新函数Fx=g【题目详解】(1)已知f'当a≤0时,f'(x)≥0,∴f(x)在0,π2上单调递增,此时不存在极大值点;当a>0时,f''(x)=-sinx-a<0,又f'(0)=1>0,f'π2=-π2a<0,故存在唯一x0此时,x0是函数fx综上可得a>0;(2)依题g(x)=ex+∴g(x)=ex+∵g(0)=1,:x欲证x1+x2<0,等价证x令F(x)=g(-x)+g(x)-2=e∵F'(x)=e故x>0时,F'(x)单调递增∴F(x)单调递增,∴F(x)>F(0)=0,得证.【题目点拨】本题主要考查导数的应用,涉及极值点的存在性问题,以及二阶导数的应用,构造函数解决函数不等式的证明,考查函数思想,考查转化与化归数学思想的应用,属于难题。20、(1)n=(0,1,2)(2)直线AG与平面EFG所成角θ=arcsin(3)6【解题分析】

(1)建立空间直角坐标系,求出EF=(3,2,-1),EG=(-2,4,-2),设平面EFG的一个法向量n=(x,y,z),由n⋅EF(2)求出AG=(-8,2,2),由sinθ=|cos<AG,n(3)求出EA=(6,2,-4),由点A到平面EFG的距离d=【题目详解】(1)∵在正四棱锥P-BCD中,正方形ABCD的边长为32,高OP=6E是侧棱PD上的点且PE=13PD,F是侧棱PAG是△PBC的重心.如图建立空间直角坐标系.∴D(0,-6,0),P(0,0,6),E(0,-2,4),A(6,0,0),B(0,6,0),C(-6,0,0),G(-2,2,2),EF=(3,2,-1),EG=(-2,4,设平面EFG的一个法向量n=(x,y,z)则n⋅EF=3x+2y-z=0平面EFG的一个法向量n=(0,1,2)(2)AG=(-8,2,则sinθ=|∴直线AG与平面EFG所成角θ=arcsin(3)EA=(6,2,∴点A到平面EFG的距离d=|【题目点拨】本题主要考查了平面的法向量、线面角、点到平面的距离的求法,空间中线线、线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论