版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省白城市数学高二下期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正方体的棱长为,定点在棱上(不在端点上),点是平面内的动点,且点到直线的距离与点到点的距离的平方差为,则点的轨迹所在的曲线为A.圆 B.椭圆 C.双曲线 D.抛物线2.(为虚数单位),则复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.直线与曲线相切于点,则的值为()A.2 B.-1 C.1 D.-24.已知直线,,点为抛物线上的任一点,则到直线的距离之和的最小值为()A.2 B. C. D.5.若均为第二象限角,满足,,则()A. B. C. D.6.椭圆的长轴长为()A.1 B.2 C. D.7.大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为()A. B. C. D.8.已知双曲线的离心率为,则m=A.4 B.2 C. D.19.已知函数,,若有最小值,则实数的取值范围是()A. B. C. D.10.下列函数中与函数相同的是()A. B. C. D.11.设为随机变量,,若随机变量的数学期望,则等于()A. B.C. D.12.已知函数,若存在,使得有解,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数y=fx的图象在点M2,f2处的切线方程是y=x+4,则14.复数满足,则的最小值是___________.15.已知复数满足,则的最小值为___________.16.除以5的余数是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)[选修4—4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.18.(12分)(1)3个不同的球放入5个不同的盒子,每个盒子至多放1个球,共有多少种放法?(2)3个不同的球放入5个不同的盒子,每个盒子放球量不限,共有多少种放法?19.(12分)已知数列满足:.(Ⅰ)若,且,,成等比数列,求;(Ⅱ)若,且,,,成等差数列,求.20.(12分)如图,在四棱锥中,平面,,∥,,.为的中点,点在上,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.21.(12分)已知.(Ⅰ)计算的值;(Ⅱ)若,求中含项的系数;(Ⅲ)证明:.22.(10分)已知函数.(1)讨论在上的单调性;(2)若对恒成立,求正整数的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
作,,连接,以为原点建立空间直角坐标系,利用勾股定理和两点间距离公式构造,整理可得结果.【题目详解】作,,垂足分别为以为原点建立如下图所示的空间直角坐标系:设,由正方体特点可知,平面,,整理得:的轨迹是抛物线本题正确选项:【题目点拨】本题考查立体几何中点的轨迹问题,关键是能够通过建立空间直角坐标系,求出动点满足的方程,从而求得轨迹.2、A【解题分析】
通过求出,然后得到复数对应的点的坐标.【题目详解】由得所以复数在复平面对应的点在第一象限.【题目点拨】本题主要考查复数的基本概念,两个复数代数形式的除法,复数与复平面内对应点之间的关系,属于基础题.3、A【解题分析】
求得函数的导数,可得切线的斜率,由切点满足切线的方程和曲线的方程,解方程即可求解,得到答案.【题目详解】由题意,直线与曲线相切于点,则点满足直线,代入可得,解得,又由曲线,则,所以,解得,即,把点代入,可得,解答,所以,故选A.【题目点拨】本题主要考查了利用导数的几何意义求解参数问题,其中解答中熟记导数的几何意义,合理准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解题分析】分析:由抛物线的定义可知P到直线l1,l1的距离之和的最小值为焦点F到直线l1的距离.详解:抛物线的焦点为F(﹣1,0),准线为l1:x=1.∴P到l1的距离等于|PF|,∴P到直线l1,l1的距离之和的最小值为F(﹣1,0)到直线l1的距离.故选:C.点睛:本题主要考查了抛物线定义的应用,属于基础题.5、B【解题分析】
利用同角三角函数的基本关系求得cosα和sinβ的值,两角和的三角公式求得cos(α+β)的值.【题目详解】解:∵sinα,cosβ,α、β均为第二象限角,∴cosα,sinβ,∴cos(α+β)=cosαcosβ-sinαsinβ•(),故答案为B【题目点拨】本题主要考查同角三角函数的基本关系,两角和的余弦公式,属于基础题.6、B【解题分析】
将椭圆方程化成标准式,根据椭圆的方程可求,进而可得长轴.【题目详解】解:因为,所以,即,,所以,故长轴长为故选:【题目点拨】本题主要考查了椭圆的定义的求解及基本概念的考查,属于基础题.7、C【解题分析】
基本事件总数n36,小明恰好分配到甲村小学包含的基本事件个数m12,由此能求出小明恰好分配到甲村小学的概率.【题目详解】解:大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,基本事件总数n36,小明恰好分配到甲村小学包含的基本事件个数m12,∴小明恰好分配到甲村小学的概率为p.故选C.【题目点拨】本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.8、B【解题分析】
根据离心率公式计算.【题目详解】由题意,∴,解得.故选B.【题目点拨】本题考查双曲线的离心率,解题关键是掌握双曲线的标准方程,由方程确定.9、C【解题分析】
对函数求导得出,由题意得出函数在上存在极小值点,然后对参数分类讨论,在时,函数单调递增,无最小值;在时,根据函数的单调性得出,从而求出实数的取值范围.【题目详解】,,构造函数,其中,则.①当时,对任意的,,则函数在上单调递减,此时,,则对任意的,.此时,函数在区间上单调递增,无最小值;②当时,解方程,得.当时,,当时,,此时,.(i)当时,即当时,则对任意的,,此时,函数在区间上单调递增,无最小值;(ii)当时,即当时,,当时,,由零点存在定理可知,存在和,使得,即,且当和时,,此时,;当时,,此时,.所以,函数在处取得极大值,在取得极小值,由题意可知,,,可得,又,可得,构造函数,其中,则,此时,函数在区间上单调递增,当时,则,.因此,实数的取值范围是,故选:C.10、B【解题分析】
判断各个选项中的函数和函数是否具有相同的定义域、值域、对应关系,从而得出结论.【题目详解】由于函数yt,和函数具有相同的定义域、值域、对应关系,故是同一个函数,故B满足条件.由于函数y和函数的定义域不同,故不是同一个函数,故排除D.由于函数,y|x|和函数的值域不同,故不是同一个函数,故排除A,C.故选:A.【题目点拨】本题主要考查函数的三要素,只有两个函数的定义域、对应关系、值域都相同时,这两个函数才是同一个函数,属于基础题.11、A【解题分析】
根据解得,所以.【题目详解】因为,得,即.所以.故选【题目点拨】本题主要考查二项分布,同时考查了数学期望,熟记公式是解题的关键,属于简单题.12、B【解题分析】
先将化为,再令,则问题转化为:,然后通过导数求得的最大值代入可得.【题目详解】若存在,使得有解,即存在,使得,令,则问题转化为:,因为,当时,;当时,,所以函数在上递增,在上递减,所以,所以.故选B.【题目点拨】本题考查了不等式能成立问题,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、7.【解题分析】试题分析:由函数y=f(x)的图象在点M(2,f(2))处的切线方程是y=x+4,则f'(2)=1,且f(2)=2+4=6,所以考点:导数的几何意义.14、【解题分析】
点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,求出圆心到原点的距离,最短距离要减去半径即可得解.【题目详解】解:复数满足,点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,连接圆心与原点,长度是,最短距离要减去半径故答案为:【题目点拨】本题考查复数的几何意义,本题解题的关键是看出复数对应的点在圆上,根据圆上到原点的最短距离得到要求的距离,属于基础题.15、4【解题分析】
根据复数模的几何意义,将条件转化为距离问题即可得到答案【题目详解】设,由得所以即点是圆心为,半径为1的圆上的动点,表示的是点与点的距离所以其最小值为点到圆心的距离减去半径即故答案为:4【题目点拨】本题考查的是复数模的几何意义,圆当中的最值问题一般向圆心进行转化.16、1【解题分析】试题分析:,它除以5余数为1.考点:二项式定理,整除的知识.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);.(2)或.【解题分析】试题分析:(1)消去参数得到的普通方程为.利用可以把的极坐标方程化为直角坐标方程.(2)把的直角方程转化为参数方程,利用点到直线的距离公式算出距离为,利用得到.因为直线与椭圆是相离的,所以或,分类讨论就可以得到相应的值.解析:(1)由曲线的参数方程,消去参数,可得的普通方程为:.由曲线的极坐标方程得,∴曲线的直角坐标方程为.(2)设曲线上任意一点为,,则点到曲线的距离为.∵,∴,,当时,,即;当时,,即.∴或.点睛:一般地,如果圆锥曲线上的动点到直线的距离有最小值,那么这条直线和圆锥曲线的位置关系式相离的.18、(1).(2)【解题分析】
(1)把三个不同的小球分别放入5个不同的盒子里(每个盒子至多放一个球),实际上是从5个位置选3个位置用3个元素进行排列,即可求得答案.(2)因为3个不同的球放入5个不同的盒子,每个盒子放球量不限,所以一个球一个球地放到盒子里去,每只球都可有5种独立的放法,即可求得答案.【题目详解】(1)把3个不同的小球分别放入5不同的盒子里(每个盒子至多放一个球),实际上是从5个位置选3个位置用3个元素进行排列,共有种结果,共有:方法.(2)3个不同的球放入5个不同的盒子,每个盒子放球量不限一个球一个球地放到盒子里去,每只球都可有5种独立的放法,由分步乘法计数原理,放法共有种共有:放法.【题目点拨】本题的求解按照分步计数原理可先将球分组,选择盒子,再将球排列到选定的盒子里,这种先选后排的方法是最常用的思路,考查了分析能力和计算能力,属于中档题.19、(Ⅰ)或;(Ⅱ)是小于等于的所有实数值.【解题分析】
(Ⅰ)根据所给的递推公式,把,用表示,然后根据,,成等比数列,列出等式,求出;(Ⅱ)根据所给的递推公式,把,用表示,然后根据,,成等差数列,列出等式,求出;【题目详解】(I)因为,所以,因为,,成等比数列,所以,①时,所以,得;②当,所以,得(舍)或综合①②可知,或.(II)因为,所以,,因,,,成等差数列,而显然,,成等差数列且公差为4,所以得,即,故即所求是小于等于的所有实数值.【题目点拨】本题考查了等差数列、等比数列的定义,考查了绝对值的运算,考查了数列递推公式的应用,考查了分类思想.20、(Ⅰ)见解析(Ⅱ)【解题分析】
(Ⅰ)结合线面垂直的判定定理即可证明;(Ⅱ)采用建系法,以为原点建立空间直角坐标系,分别求出平面和平面的法向量,再由向量夹角的余弦公式求解即可;【题目详解】(Ⅰ)由于平面,平面,则,由题意可知,且,由线面垂直的判定定理可得平面.(Ⅱ)以点为坐标原点,平面内与垂直的直线为轴,,方向为轴,轴建立如图所示的空间直角坐标系,易知:,,,,由可得点的坐标为,由可得,设平面的法向量为:,则,据此可得平面的一个法向量为:,很明显平面的一个法向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 龙岩学院《地理信息系统实践》2023-2024学年第一学期期末试卷
- 2024-2025学年度河南省南阳市六校高一第一学期12月第二次联考历史试题
- 5 茧中钻出了蚕蛾(教学实录)2023-2024学年三年级下册科学 教科版
- Module3 Unit1 We'll go to the zoo (教学实录) -2023-2024学年外研版(一起)英语三年级下册
- 六安职业技术学院《网站设计与制作》2023-2024学年第一学期期末试卷
- 2024年度乌依离婚后遗产管理及分配合同3篇
- 2024年标准版工程委托项目管理合同版B版
- 2024年度染整用纱线批量采购合同2篇
- 网站制作及股票配送协议
- 12 低碳生活每一天 教学实录-2024-2025学年道德与法治四年级上册统编版
- 情绪调试-再见emo你好+Emotion+高一下学期心理健康教育课(通用版)
- TCALC 003-2023 手术室患者人文关怀管理规范
- 北京市西城区2023-2024学年七年级上学期期末地理试卷
- 建设工程安全风险管理
- 临水临电施工组织方案
- 国网安全生产培训课件
- 木材的分类和命名规则
- 班会:拓展学生的兴趣爱好课件
- 学校“禁毒八个一”台账目录
- 心律失常PPT医学课件
- 城市污水处理厂水质检测与安全生产
评论
0/150
提交评论