上海市长宁区9校2023-2024学年数学九上期末学业水平测试模拟试题含解析_第1页
上海市长宁区9校2023-2024学年数学九上期末学业水平测试模拟试题含解析_第2页
上海市长宁区9校2023-2024学年数学九上期末学业水平测试模拟试题含解析_第3页
上海市长宁区9校2023-2024学年数学九上期末学业水平测试模拟试题含解析_第4页
上海市长宁区9校2023-2024学年数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市长宁区9校2023-2024学年数学九上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了().A.10° B.20° C.30° D.60°2.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或03.如图所示,在矩形ABCD中,点F是BC的中点,DF的延长线与AB的延长线相交于点E,DE与AC相交于点O,若,则()A.4 B.6 C.8 D.104.等腰三角形底边长为10,周长为36,则底角的余弦值等于()A. B. C. D.5.下列对于二次根式的计算正确的是()A. B.2=2C.2=2 D.2=6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是A. B. C. D.7.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数 B.众数 C.中位数 D.方差8.如图,中,,,.将沿图示中的虚线剪开,按下面四种方式剪下的阴影三角形与原三角形相似的是()A.①②③ B.②③④ C.①② D.④9.关于x的一元二次方程有两个实数根,,则k的值()A.0或2 B.-2或2 C.-2 D.210.下列事件中,为必然事件的是()A.抛掷10枚质地均匀的硬币,5枚正面朝上B.某种彩票的中奖概率为,那么买100张这种彩票会有10张中奖C.抛掷一枚质地均匀的骰子,朝上一面的数字不大于6D.打开电视机,正在播放戏曲节目11.用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.5 B.10 C. D.12.如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的().A.甲 B.乙 C.丙 D.丁二、填空题(每题4分,共24分)13.将二次函数的图像向下平移个单位后,它的顶点恰好落在轴上,那么的值等于__________.14.如图,某水坝的坡比为,坡长为米,则该水坝的高度为__________米.15.抛物线y=(x﹣2)2﹣3的顶点坐标是____.16.小明同学身高1.5米,经太阳光照射,在地面的影长为2米,他此时测得旗杆在同一地面的影长为12米,那么旗杆高为_________米.17.已知直线y=kx(k≠0)与反比例函数y=﹣的图象交于点A(x₁,y₁),B(x₂,y₂)则2x₁y₂+x₂y₁的值是_____.18.在Rt△ABC中,∠C=90°,若sinA=,则cosB=_____.三、解答题(共78分)19.(8分)随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比18204合计请你根据以上信息,解答下列问题:(1)______,______,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.20.(8分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?21.(8分)2013年,东营市某楼盘以每平方米6500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)22.(10分)解下列方程:配方法.23.(10分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)24.(10分)每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元),求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态25.(12分)小丹要测量灯塔市葛西河生态公园里被湖水隔开的两个凉亭和之间的距离,她在处测得凉亭在的南偏东方向,她从处出发向南偏东方向走了米到达处,测得凉亭在的东北方向.(1)求的度数;(2)求两个凉亭和之间的距离(结果保留根号).26.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=;(3)试估算盒子里黑、白两种颜色的球各有多少只?

参考答案一、选择题(每题4分,共48分)1、D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求10分钟分针旋转的度数就简单了.【详解】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键.2、B【解析】设方程的两根为x1,x2,

根据题意得x1+x2=1,

所以a2-2a=1,解得a=1或a=2,

当a=2时,方程化为x2+1=1,△=-4<1,故a=2舍去,

所以a的值为1.

故选B.3、C【解析】由矩形的性质得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA证明△BEF≌△CDF,得出BE=CD=AB,则AE=2AB=2CD,再根据AOECOD,面积比等于相似比的平方即可。【详解】∵四边形ABCD是矩形,

∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,

∴∠EBF=90°,

∵F为BC的中点,

∴BF=CF,

在△BEF和△CDF中,,

∴△BEF≌△CDF(ASA),

∴BE=CD=AB,

∴AE=2AB=2CD,

∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故选:C.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握有关的性质与判定是解决问题的关键.4、A【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案.【详解】解:如图,BC=10cm,AB=AC,可得AC=(36-10)÷2=26÷2=13(cm).又AD是底边BC上的高,∴CD=BD=5cm,

∴cosC=,即底角的余弦值为,故选:A.【点睛】本题主要考查等腰三角形的性质和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键.5、C【解析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选C.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6、B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为,即转动圆盘一次,指针停在黄区域的概率是,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7、D【解析】A.∵原平均数是:(1+2+3+3+4+1)÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3)÷7=3;∴平均数不发生变化.B.∵原众数是:3;添加一个数据3后的众数是:3;∴众数不发生变化;C.∵原中位数是:3;添加一个数据3后的中位数是:3;∴中位数不发生变化;D.∵原方差是:;添加一个数据3后的方差是:;∴方差发生了变化.故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.8、A【分析】根据相似三角形的判定定理对各项进行逐项判断即可.【详解】解:①剪下的三角形与原三角形有两个角相等,故两三角形相似;②剪下的三角形与原三角形有两个角相等,故两三角形相似;③剪下的三角形与原三角形对应边成比例,故两三角形相似;④剪下的三角形与原三角形对应边不成比例,故两三角形不相似;综上所述,①②③剪下的三角形与原三角形相似.故选:A.【点睛】本题考查的知识点是相似三角形的判定定理,熟记定理内容是解此题的关键.9、D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.【详解】解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.10、C【分析】根据必然事件的概念答题即可【详解】A:抛掷10枚质地均匀的硬币,概率为0.5,但是不一定5枚正面朝上,故A错误;B:概率是表示一个事件发生的可能性的大小,某种彩票的中奖概率为,是指买张这种彩票会有0.1的可能性中奖,故B错误;C:一枚质地均匀的骰子最大的数字是6,故C正确;D:.打开电视机,正在播放戏曲节目是随机事件,故D错误.故本题答案为:C【点睛】本题考查了必然事件的概念11、A【分析】根据弧长公式计算出弧长,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π,设圆锥的底面半径是r,列出方程求解.【详解】半径为15cm,圆心角为120°的扇形的弧长是=10π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π.

设圆锥的底面半径是r,

则得到2πr=10π,

解得:r=5,

这个圆锥的底面半径为5.故选择A.【点睛】本题考查弧长的计算,解题的关键是掌握弧长的计算公式.12、A【分析】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【详解】解:根据题意,△ABC的三边之比为要使△ABC∽△DEF,则△DEF的三边之比也应为经计算只有甲点合适,

故选:A.

【点睛】本题考查了相似三角形的判定定理:

(1)两角对应相等的两个三角形相似.

(2)两边对应成比例且夹角相等的两个三角形相似.

(3)三边对应成比例的两个三角形相似.二、填空题(每题4分,共24分)13、1【分析】利用平移的性质得出平移后解析式,进而得出其顶点坐标,再代入直线y=0求出即可.【详解】y=x2-2x+2=(x-1)2+1,

∴将抛物线y=x2-2x+2沿y轴向下平移1个单位,使平移后的抛物线的顶点恰好落在x轴上,

∴m=1,

故答案为:1.【点睛】此题考查二次函数的性质,二次函数的平移,正确记忆二次函数平移规律是解题关键.14、【分析】根据坡度的定义,可得,从而得∠A=30°,进而即可求解.【详解】∵水坝的坡比为,∠C=90°,∴,即:tan∠A=∴∠A=30°,∵为米,∴为1米.故答案是:1.【点睛】本题主要考查坡度的定义和三角函数的定义,掌握坡度的定义,是解题的关键.15、(2,﹣3)【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点.解题关键点:熟记求抛物线顶点坐标的公式.16、9【解析】设旗杆高为x米,根据同时同地物高与影长成正比列出比例式,求解即可.【详解】设旗杆高为x米,根据题意得,解得:x=9,故答案为:9【点睛】本题主要考查同一时刻物高和影长成正比.考查利用所学知识解决实际问题的能力.17、1【分析】由于正比例函数和反比例函数图象都是以原点为中心的中心对称图形,因此它们的交点A、B关于原点成中心对称,则有x₂=﹣x₁,y₂=﹣y₁.由A(x₁,y₂)在双曲线y=﹣上可得x₁y₁=﹣5,然后把x₂=﹣x₁,y₂=﹣y₁代入2x₁y₂+x₂y₁的就可解决问题.【详解】解:∵直线y=kx(k>0)与双曲线y=﹣都是以原点为中心的中心对称图形,∴它们的交点A、B关于原点成中心对称,∴x₂=﹣x₁,y₂=﹣y₁.∵A(x₁,y₁)在双曲线y=﹣上,∴x₁y₁=﹣5,∴2x₁y₂+x₂y₁=2x₁(﹣y₁)+(﹣x₁)y₁=﹣3x₁y₁=1.故答案为:1.【点睛】本题主要考查了反比例函数图象上点的坐标特征、正比例函数及反比例函数图象的对称性等知识,得到A、B关于原点成中心对称是解决本题的关键.18、.【解析】根据一个角的余弦等于它余角的正弦,可得答案.【详解】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案为.【点睛】本题考查了互余两角的三角函数,利用一个角的余弦等于它余角的正弦是解题关键.三、解答题(共78分)19、(1),8,补图详见解析;(2)这次活动能顺利开展;(3)(两人都是女生)【分析】(1)先用20除以40%求出样本容量,然后求出a,m的值,并补全条形统计图即可;(2)先求出b的值,用b的值乘以1500,然后把计算的结果与150进行大小比较,则可判断这次活动能否顺利开展;(3)画树状图展示所有12种等可能的结果数,找出所选两人都是女生的结果数为2,然后根据概率公式计算.【详解】解:(1))20÷40%=50人,a=18÷50×100%=36%,m=50×16%=8,(2)b=4÷50×100%=8%,(人)∵∴这次活动能顺利开展.(3)树状图如下:由此可见,共有12种等可能的结果,其中所选两人都是女生的结果数有2种∴(两人都是女生).【点睛】此题考查了统计表和条形统计图的综合,用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比.20、(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)y=﹣0.2x+60(0≤x≤90);(3)当该产品产量为75kg时,获得的利润最大,最大值为1.【解析】试题分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.试题解析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的与x之间的函数关系式为,∵的图象过点(0,60)与(90,42),∴,∴解得:,∴这个一次函数的表达式为:y=﹣0.2x+60(0≤x≤90);(3)设与x之间的函数关系式为,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W==,∴当x=75时,W的值最大,最大值为1;当90≤x130时,W==,∴当x=90时,W=,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为1.考点:二次函数的应用.21、(1)平均每年下调的百分率为10%;(2)张强的愿望可以实现.【解析】试题分析:(1)设平均每年下调的百分率为x,则2014年的均价为6500(1-x),2015年的均价为6500(1-x)(1-x),即6500(1-x)2,根据题意,得:6500(1-x)2=5265,解方程即可;(2)计算出2016年的均价,算出总房款,即可知道能否实现.试题解析:(1)设平均每年下调的百分率为x,根据题意,得:6500(1-x)2=5265,解得:x1=0.1=10%,x2=1.9(不合题意,舍去),答:平均每年下调的百分率为10%;(2)如果下调的百分率相同,2016年的房价为:5265×(1-10%)=4738.5(元/m2),则100平方米的住房的总房款为100×4738.5=473850(元)=47.385(万元),∵20+30>47.385∴张强的愿望可以实现.考点:一元二次方程的应用.22、;或.

【解析】试题分析:(1)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半的平方,把方程左边写完全平方的形式,然后用直接开平方法求解;(2)把方程右边的项移到左边,然后用因式分解法求解.试题解析:,,即,则,;,,则或,解得:或.23、通信塔CD的高度约为15.9cm.【解析】过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【详解】过点A作AE⊥CD于E,则四边形ABDE是矩形,设CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度约为15.9cm.【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.24、(1)y=,(2)w=,在这15天中,第9天销售额达到最大,最大销售额是1元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态.【分析】(1)用待定系数法可求与的函数关系式;(2)利用总销售额=销售单价×销售量,分三种情况,找到(元)关于(天)的函数解析式,然后根据函数的性质即可找到最大值.(3)先根据第(2)问的结论判断出在这三段内哪一段内会出现亏损,然后列出不等式求出x的范围,即可找到答案.【详解】解:(1)当时,设直线的表达式为将代入到表达式中得解得∴当时,直线的表达式为∴y=,(2)由已知得:w=py.当1≤x≤5时,w=py=(-x+15)(20x+180)=-20x2+120x+27

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论