运城市重点中学2023-2024学年数学九上期末学业水平测试模拟试题含解析_第1页
运城市重点中学2023-2024学年数学九上期末学业水平测试模拟试题含解析_第2页
运城市重点中学2023-2024学年数学九上期末学业水平测试模拟试题含解析_第3页
运城市重点中学2023-2024学年数学九上期末学业水平测试模拟试题含解析_第4页
运城市重点中学2023-2024学年数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

运城市重点中学2023-2024学年数学九上期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.是四边形的外接圆,平分,则正确结论是()A. B. C. D.2.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3) B.(0,2.5) C.(0,2) D.(0,1.5)3.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4.2,则DF的长是()A. B.6 C.6.3 D.10.54.已知点(﹣4,y1)、(4,y2)都在函数y=x2﹣4x+5的图象上,则y1、y2的大小关系为()A.y1<y2 B.y1>y2 C.y1=y2 D.无法确定5.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°6.如图,抛物线y=﹣x2+2x+2交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.下列说法:其中正确判断的序号是()①抛物线与直线y=3有且只有一个交点;②若点M(﹣2,y1),N(1,y2),P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1;④在x轴上找一点D,使AD+BD的和最小,则最小值为.A.①②④ B.①②③ C.①③④ D.②③④7.如图,平行四边形ABCD中,EF∥BC,AE:EB=2:3,EF=4,则AD的长为()A. B.8 C.10 D.168.阅读理解:已知两点,则线段的中点的坐标公式为:,.如图,已知点为坐标原点,点,经过点,点为弦的中点.若点,则有满足等式:.设,则满足的等式是()A. B.C. D.9.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.cm C.8cm D.cm10.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?”如果设木条长尺,绳子长尺,可列方程组为()A. B. C. D.11.关于x的一元二次方程x2﹣mx+(m﹣2)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定12.已知的半径为,点到圆心的距离为,则点和的位置关系是()A.点在圆内 B.点在圆上 C.点在圆外 D.不能确定二、填空题(每题4分,共24分)13.已知圆的半径是,则该圆的内接正六边形的面积是__________14.已知,则的值为___________.15.二次函数y=ax1+bx+c(a≠2)的部分图象如图,图象过点(﹣1,2),对称轴为直线x=1.下列结论:①4a+b=2;②9a+c>3b;③当x>﹣1时,y的值随x值的增大而增大;④当函数值y<2时,自变量x的取值范围是x<﹣1或x>5;⑤8a+7b+1c>2.其中正确的结论是_____.16.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是______________.17.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.18.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s=10t+2t2,若滑到坡底的时间为4秒,则此人下降的高度为_______.三、解答题(共78分)19.(8分)如图,已知二次函数的图象经过点,.(1)求的值;(2)直接写出不等式的解.20.(8分)如图,在平面直角坐标系中,函数的图象与函数()的图象相交于点,并与轴交于点.点是线段上一点,与的面积比为2:1.(1),;(2)求点的坐标;(1)若将绕点顺时针旋转,得到,其中的对应点是,的对应点是,当点落在轴正半轴上,判断点是否落在函数()的图象上,并说明理由.21.(8分)如图1,直线y=x与双曲线y=交于A,B两点,根据中心对称性可以得知OA=OB.(1)如图2,直线y=2x+1与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试证明:AC=BD;(2)如图3,直线y=ax+b与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试问:AC=BD还成立吗?(3)如果直线y=x+3与双曲线y=交于A,B两点,与坐标轴交点C,D两点,若DB+DC≤5,求出k的取值范围.22.(10分)试证明:不论为何值,关于的方程总为一元二次方程.23.(10分)已知关于的方程:.(1)求证:不论取何实数,该方程都有两个不相等的实数根.(2)设方程的两根为,,若,求的值.24.(10分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.25.(12分)已知,如图,在△ABC中,∠C=90°,点D是AB外一点,过点D分别作边AB、BC的垂线,垂足分别为点E、F,DF与AB交于点H,延长DE交BC于点G.求证:△DFG∽△BCA26.定义:无论函数解析式中自变量的字母系数取何值,函数的图象都会过某一个点,这个点称为定点.例如,在函数中,当时,无论取何值,函数值,所以这个函数的图象过定点.求解体验(1)①关于的一次函数的图象过定点_________.②关于的二次函数的图象过定点_________和_________.知识应用(2)若过原点的两条直线、分别与二次函数交于点和点且,试求直线所过的定点.拓展应用(3)若直线与拋物线交于、两点,试在拋物线上找一定点,使,求点的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆心角、弧、弦的关系对结论进行逐一判断即可.【详解】解:与的大小关系不确定,与不一定相等,故选项A错误;平分,,,故选项B正确;与的大小关系不确定,与不一定相等,选项C错误;∵与的大小关系不确定,选项D错误;故选B.【点睛】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.2、C【解析】如图,连接BF交y轴于P,

∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),

∴点C的坐标为(0,4),点G的坐标为(0,1),

∴CG=3,

∵BC∥GF,∴,∴GP=1,PC=2,

∴点P的坐标为(0,2),

故选C.【点睛】本题考查的是位似变换的概念、坐标与图形性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心是解题的关键.3、D【分析】根据平行线分线段成比例定理得出,再把已知条件代入求解即可.【详解】解:∵l1∥l2∥l3,,DE=4.2,∴,即,解得:EF=6.3,∴DF=DE+EF=10.1.故选:D.【点睛】本题考查平行线分线段成比例定理.熟练掌握平行线分线段成比例定理是解题关键.4、B【分析】首先根据二次函数解析式确定抛物线的对称轴为x=2,再根据抛物线的增减性以及对称性可得y1,y2的大小关系.【详解】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴对称轴为x=2,∵a>0,∴x>2时,y随x增大而增大,点(﹣4,y1)关于抛物线的对称轴x=2对称的点是(8,y1),8>4,∴y1>y2,故选:B.【点睛】本题主要考查的是二次函数的增减性,从对称轴分开,二次函数左右两边的增减性不相同结合题意即可解出此题.5、D【解析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6、C【分析】根据抛物线的性质和平移,以及一动点到两定点距离之和最小问题的处理方法,对选项进行逐一分析即可.【详解】①抛物线的顶点,则抛物线与直线y=3有且只有一个交点,正确,符合题意;②抛物线x轴的一个交点在2和3之间,则抛物线与x轴的另外一个交点坐标在x=0或x=﹣1之间,则点N是抛物线的顶点为最大,点P在x轴上方,点M在x轴的下放,故y1<y3<y2,故错误,不符合题意;③y=﹣x2+2x+2=﹣(x+1)2+3,将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1,正确,符合题意;④点A关于x轴的对称点,连接A′B交x轴于点D,则点D为所求,距离最小值为BD′==,正确,符合题意;故选:C.【点睛】本题考查抛物线的性质、平移和距离的最值问题,其中一动点到两定点距离之和最小问题比较巧妙,属综合中档题.7、C【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,可证明△AEF∽△ABC,再根据相似三角形的对应边成比例可解得BC的长,而在▱ABCD中,AD=BC,问题得解.【详解】解:∵EF∥BC∴△AEF∽△ABC,∴EF:BC=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∵EF=4,∴4:BC=2:5,∴BC=1,∵四边形ABCD是平行四边形,∴AD=BC=1.【点睛】本题考查(1)、相似三角形的判定与性质;(2)、平行四边形的性质.8、D【解析】根据中点坐标公式求得点的坐标,然后代入满足的等式进行求解即可.【详解】∵点,点,点为弦的中点,∴,,∴,又满足等式:,∴,故选D.【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.9、B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==6cm,∴圆锥的高为=3cm故选B.考点:圆锥的计算.10、D【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子-木条=4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:木条-绳子=1,据此列出方程组即可.【详解】由题意可得,.故选:D.【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.11、A【解析】试题解析:△=b2-4ac=m2-4(m-2)=m2-4m+8=(m-2)2+4>0,所以方程有两个不相等的实数根.故选:A.点睛:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12、B【解析】根据点与圆的位置关系进行判断.【详解】∵⊙O的半径为6cm,P到圆心O的距离为6cm,

即OP=6,

∴点P在⊙O上.

故选:B.【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.二、填空题(每题4分,共24分)13、【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【详解】解:连接、,作于,等边三角形的边长是2,,等边三角形的面积是,正六边形的面积是:;故答案为:.【点睛】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.14、【分析】设,分别表示出a,b,c,即可求出的值.【详解】设∴∴故答案为【点睛】本题考查了比例的性质,利用参数分别把a,b,c表示出来是解题的关键.15、①④⑤.【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可.【详解】解:抛物线过点(﹣1,2),对称轴为直线x=1.∴x==1,与x轴的另一个交点为(5,2),即,4a+b=2,故①正确;当x=﹣3时,y=9a﹣3b+c<2,即,9a+c<3b,因此②不正确;当x<1时,y的值随x值的增大而增大,因此③不正确;抛物线与x轴的两个交点为(﹣1,2),(5,2),又a<2,因此当函数值y<2时,自变量x的取值范围是x<﹣1或x>5,故④正确;当x=3时,y=9a+3b+c>2,当x=4时,y=16a+4b+c>2,∴15a+7b+1c>2,又∵a<2,∴8a+7b+c>2,故⑤正确;综上所述,正确的结论有:①④⑤,故答案为:①④⑤.【点睛】本题主要考查二次函数图像性质,解决本题的关键是要熟练掌握二次函数图像性质.16、48π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【详解】解:侧面积是:,底面圆半径为:,底面积,故圆锥的全面积是:,故答案为:48π【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17、75°【解析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.18、36m【分析】求滑下的距离,设出下降的高度表示出水平宽度,利用勾股定理即可求解.【详解】解:当t=4时,s=10t+2t2=72,设此人下降的高度为x米,过斜坡顶点向地面作垂线,在直角三角形中,由勾股定理得:,解得:x=36,故答案为:36m.【点睛】本题考查了解直角三角形的应用理解坡比的意义,使用勾股定理,设未知数,列方程求解.三、解答题(共78分)19、(1),;(2)【解析】(1)将已知两点代入抛物线解析式求出b与c的值即可;(2)根据图象及抛物线与x轴的交点,得出不等式的解集即可.【详解】(1)将,代入抛物线解析式得解得,(2)由(1)知抛物线解析式为:,对称轴为,所以抛物线与x轴的另一交点坐标为(2,0)由图象得:不等式的解为【点睛】本题考查待定系数法求二次函数解析式,以及二次函数与不等式,熟练掌握待定系数法是解题关键.20、(1)6,5;(2);(1),点不在函数的图象上.【分析】(1)将点分别代入反比例函数与一次函数的表达式中即可求出k,b的值;(2)先求出B的坐标,然后求出,进而求出,得出C的纵坐标,然后代入到一次函数的表达式中即可求出横坐标;(1)先根据题意画出图形,利用旋转的性质和,求出的纵坐标,根据勾股定理求出横坐标,然后判断横纵坐标之积是否为6,若是,说明在反比例函数图象上,反之则不在.【详解】(1)将点代入反比例函数中得,∴∴反比例函数的表达式为将点代入一次函数中得,∴∴一次函数的表达式为(2)当时,,解得∵与的面积比为2:1.设点C的坐标为当时,,解得∴(1)如图,过点作于点D∵绕点顺时针旋转,得到∴∴点不在函数的图象上.【点睛】本题主要考查反比例函数,一次函数与几何综合,掌握反比例函数的图象和性质,待定系数法是解题的关键.21、(1)见解析;(2)成立,见解析;(3)k≤2【分析】(1)如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.证明四边形ACFE,四边形BDEF都是平行四边形即可解决问题.(2)证明方法类似(1).(3)由题意CD=3,推出BD≤2,求出BD=2时,k的值即可判断.【详解】解:(1)如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE=S△AEF=,∵BF∥x轴,∴S△BEF=S△OBF=,∴S△AEF=S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(2)如图1中,如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE=S△AEF=,∵BF∥x轴,∴S△BEF=S△OBF=,∴S△AEF=S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(3)如图2中,∵直线y=x+3与坐标轴交于C,D,∴C(0,3),D(3,0),∴OC=OD=3,CD=3,∵CD+BD≤5,∴BD≤2,当BD=2时,∵∠CDO=45°,∴B(1,2),此时k=2,观察图象可知,当k≤2时,CD+BD≤5【点睛】本题考查一次函数与反比例函数的解题,关键在于熟记基础知识,结合图形运用性质.22、证明见解析.【分析】由题意利用配方法把二次项系数变形,根据非负数的性质得到>0,根据一元二次方程的定义证明结论.【详解】解:利用配方法把二次项系数变形有,∵(m+1)2≥0,∴,因为,所以不论为何值,方程是一元二次方程.【点睛】本题考查的是一元二次方程的概念、配方法的应用,掌握一元二次方程的定义、完全平方公式是解题的关键.23、(1)详见解析;(2).【分析】(1)要证明方程都有两个不相等的实数根,必须证明根的判别式总大于0.

(2)利用韦达定理求得x₁+x₂和x₁x₂的值,代入,求a的值.【详解】解:(1)∵,∴不论取何实数,该方程都有两个不相等的实数根.(2)由韦达定理得:,∴,解得:,经检验知符合题意,∴.【点睛】本题考查了一元二次方程根的判别式与根的情况,要证明方程都有两个不相等的实数根,必须证明根的判别式总大于0;还考查了利用韦达定理求值的问题,首先把给给出的等式化成与(x₁+x₂)、x₁x₂有关的式子,代入求值.24、(1)见解析;(2).【分析】(1)根据矩形的性质可得∠A=∠D=90°,再根据同角的余角相等求出∠1=∠3,然后利用两角对应相等,两三角形相似证明;

(2)利用勾股定理列式求出BE,再求出DE,然后根据相似三角形对应边成比例列式求解即可.【详解】(1)证明:在矩形AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论