山东省师范大学附属中学2024届高一数学第二学期期末学业质量监测试题含解析_第1页
山东省师范大学附属中学2024届高一数学第二学期期末学业质量监测试题含解析_第2页
山东省师范大学附属中学2024届高一数学第二学期期末学业质量监测试题含解析_第3页
山东省师范大学附属中学2024届高一数学第二学期期末学业质量监测试题含解析_第4页
山东省师范大学附属中学2024届高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省师范大学附属中学2024届高一数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某林区改变植树计划,第一年植树增长率200%,以后每年的植树增长率都是前一年植树增长率的12,若成活率为100%,经过4A.14 B.454 C.62.已知如图正方体中,为棱上异于其中点的动点,为棱的中点,设直线为平面与平面的交线,以下关系中正确的是()A. B.C.平面 D.平面3.直线与、为端点的线段有公共点,则k的取值范围是()A. B.C. D.4.设的内角所对的边分别为,且,已知的面积等于,,则的值为()A. B. C. D.5.若直线:与直线:垂直,则实数().A. B. C.2 D.或26.若变量满足约束条件则的最小值等于()A. B. C. D.27.设l是直线,,是两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.设点是函数图象上的任意一点,点满足,则的最小值为()A. B. C. D.9.记动点P是棱长为1的正方体的对角线上一点,记.当为钝角时,则的取值范围为()A. B. C. D.10.已知数列{an}为等差数列,,=1,若,则=()A.22019 B.22020 C.22017 D.22018二、填空题:本大题共6小题,每小题5分,共30分。11.方程组的增广矩阵是________.12.已知向量,,若,则__________.13.若等比数列的各项均为正数,且,则等于__________.14.设变量满足条件,则的最小值为___________15.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.16.对于下列数排成的数阵:它的第10行所有数的和为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形中,,,.(1)若,求的面积;(2)若,,求的长.18.已知数列满足,,,.(1)证明:数列是等比数列;(2)求数列的通项公式;(3)证明:.19.的内角A,B,C的对边分别为a,b,c,已知(1)求A;(2)若A为锐角,,的面积为,求的周长.20.已知关于的不等式.(1)当时,解上述不等式.(2)当时,解上述关于的不等式21.某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是1.(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为12n-2,则第n【题目详解】由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为1则第n年的林区的树木数量为an∴a1=3a0,a因此,经过4年后,林区的树木量是原来的树木量的454【题目点拨】本题考查数列的性质和应用,解题的关键在于建立数列的递推关系式,然后逐项进行计算,考查分析问题和解决问题的能力,属于中等题.2、C【解题分析】

根据正方体性质,以及线面平行、垂直的判定以及性质定理即可判断.【题目详解】因为在正方体中,,且平面,平面,所以平面,因为平面,且平面平面,所以有,而,则与不平行,故选项不正确;若,则,显然与不垂直,矛盾,故选项不正确;若平面,则平面,显然与正方体的性质矛盾,故不正确;而因为平面,平面,所以有平面,所以选项C正确,.【题目点拨】本题考查了线线、线面平行与垂直的关系判断,属于中档题.3、D【解题分析】

由直线方程可得直线恒过点,利用两点连线斜率公式可求得临界值和,从而求得结果.【题目详解】直线恒过点则,本题正确选项:【题目点拨】本题考查利用直线与线段有交点确定直线斜率取值范围的问题,关键是能够确定直线恒过的定点,从而找到直线与线段有交点的临界状态.4、D【解题分析】

由正弦定理化简已知,结合,可求,利用同角三角函数基本关系式可求,进而利用三角形的面积公式即可解得的值.【题目详解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面积,解得.故选:.【题目点拨】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.5、A【解题分析】试题分析:直线:与直线:垂直,则,.考点:直线与直线垂直的判定.6、A【解题分析】

由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【题目详解】解:由变量x,y满足约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1).故选A.【题目点拨】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.7、D【解题分析】

利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【题目详解】A.若,,则与可能平行,也可能相交,所以不正确.B.若,,则与可能的位置关系有相交、平行或,所以不正确.C.若,,则可能,所以不正确.D.若,,由线面平行的性质过的平面与相交于,则,又.

所以,所以有,所以正确.故选:D【题目点拨】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.8、B【解题分析】

函数表示圆位于x轴下面的部分.利用点到直线的距离公式,求出最小值.【题目详解】函数化简得.圆心坐标,半径为2.所以【题目点拨】本题考查点到直线的距离公式,属于基础题.9、B【解题分析】

建立空间直角坐标系,利用∠APC不是平角,可得∠APC为钝角等价于cos∠APC<0,即

,从而可求λ的取值范围.【题目详解】

由题设,建立如图所示的空间直角坐标系D-xyz,

则有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)

=(1,1,-1),∴

=(λ,λ,-λ),

=

+

=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)

=

+

=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)

显然∠APC不是平角,所以∠APC为钝角等价于cos∠APC<0

∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得

<λ<1

因此,λ的取值范围是(

,1),故选B.

点评:本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.10、A【解题分析】

根据等差数列的性质和函数的性质即可求出.【题目详解】由题知∵数列{an}为等差数列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故选A.【题目点拨】本题考查了等差数列的性质和函数的性质,考查了运算能力和转化能力,属于中档题,注意:若{an}为等差数列,且m+n=p+q,则,性质的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【题目详解】由题意,方程组的增广矩阵为其系数以及常数项构成的矩阵,故方程组的增广矩阵是.故答案为:【题目点拨】本题考查了二元一次方程组与增广矩阵的关系,需理解增广矩阵的涵义,属于基础题.12、1【解题分析】由,得.即.解得.13、50【解题分析】由题意可得,=,填50.14、-1【解题分析】

根据线性规划的基本方法求解即可.【题目详解】画出可行域有:因为.根据当直线纵截距最大时,取得最小值.由图易得在处取得最小值.故答案为:【题目点拨】本题主要考查了线性规划的基本运用,属于基础题.15、【解题分析】

绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【题目详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【题目点拨】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.16、【解题分析】

由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【题目详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【题目点拨】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)由余弦定理求出BC,由此能求出△ABC的面积.(2)设∠BAC=θ,AC=x,由正弦定理得从而,在中,由正弦定理得,建立关于θ的方程,由此利用正弦定理能求出sin∠CAD.再利用余弦定理可得结果.【题目详解】(1)因为,,,所以,即,所以.所以.(2)设,,则,在中,由正弦定理得:,所以;在中,,所以.即,化简得:,所以,所以,,所以在中,.即,解得或(舍).【题目点拨】本题考查正、余弦定理在解三角形中的应用,考查了引入角的技巧方法,考查运算求解能力,考查函数与方程思想,是中档题.18、(1)证明见解析;(2);(3)证明见解析.【解题分析】

(1)由,得,即可得到本题答案;(2)由,得,即可得到本题答案;(3)当时,满足题意;若n是偶数,由,可得;当n是奇数,且时,由,可得,综上,即可得到本题答案.【题目详解】(1)因为,所以,因为,所以,所以数列是等比数列;(2)因为,所以,所以,又因为,所以,所以是以为首项,为公比的等比数列,所以,所以;(3)①当时,;②若n是偶数,则,所以当n是偶数时,;③当n是奇数,且时,;综上所述,当时,.【题目点拨】本题主要考查利用构造法证明等比数列并求通项公式,以及数列与不等式的综合问题.19、(1)或;(2).【解题分析】

(1)由正弦定理将边化为对应角的正弦值,即可求出结果;(2)由余弦定理和三角形的面积公式联立,即可求出结果.【题目详解】(I)由正弦定理得,,即又,或.(II),由余弦定理得,即,而的面积为.的周长为5+.【题目点拨】本题主要考查正弦定理和余弦定理解三角形,属于基础题型.20、(1).(2)当时,解集为,当时,解集为,当时,解集为或【解题分析】

(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对分类讨论,即可由零点大小确定不等式的解集.【题目详解】(1)当时,代入可得,解不等式可得,所以不等式的解集为.(2)关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【题目点拨】本题考查了一元二次不等式的解法,含参数分类讨论的应用,属于基础题.21、(3)甲班参加;(4).【解题分析】

试题分析:(3)由题意知求出x=5,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论