福建省2021年中考数学试卷(含答案)_第1页
福建省2021年中考数学试卷(含答案)_第2页
福建省2021年中考数学试卷(含答案)_第3页
福建省2021年中考数学试卷(含答案)_第4页
福建省2021年中考数学试卷(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年福建省中考数学试卷

一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项

是符合要求的.

1.在实数近,J,0,一1中,最小的数是()

A.-1B.OC.gD.72

【答案】A

【解析】

【分析】根据正数大于0,。大于负数,两个负数,绝对值大的反而小.

【详解】解:在实数正,0,-1中,

亚,g为正数大于0,

-1为负数小于0,

・•.最小的数是:一1.

故选:A.

【点睛】本题考查了实数比较大小,解题的关键是:根据正数大于0,0大于负数,两个负数,绝对值大的

反而小,可以直接判断出来.

2.如图所示的六角螺栓,其俯视图是()

【答案】A

【解析】

【分析】根据从上面看到的图形即可得到答案.

【详解】从上面看是一个正六边形,中间是一个圆,

故选:A.

【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实

线,看不见部分的轮廓线要画成虚线.

3.如图,某研究性学习小组为测量学校4与河对岸工厂B之间的距离,在学校附近选一点C,利用测量仪

器测得NA=6()o,NC=90°,AC=2km.据此,可求得学校与工厂之间的距离等于()

A.2kmB.3kmC.273kmD.4km

【答案】D

【解析】

【分析】解直角三角形,已知一条直角边和一个锐角,求斜边的长.

【详解】•ZA=60°,NC=90°,AC=2km

cosA----,cos60°--

AB2

“八AC2

AB=-----------4km

cosA1•

2

故选D.

【点睛】本题考查解直角三角形应用,掌握特殊锐角三角函数的值是解题关键.

4.下列运算正确的是()

22b32326

A.2a-a=2B.(a-1)=a-lC.a^a=aD.(2a)=4«

【答案】D

【解析】

【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案.

【详解】解:A:2“一。=(2-1)。=。,故A错误;

B:(a—1)-=a?—2。+1,故B错误;

C:。6+/=“6-3=。3,故c错误;

D:(2")2=22%/)2=43x2=46.

故选:D

【点睛】本题考查了整式的加减法法则、乘法公式、同底数基的除法法则、积的乘方、幕的乘方等知识点,

熟知上述各种不同的运算法则或公式,是解题的关键.

5.某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩

(百分制)如表:

项目

甲乙丙T

作品

创新性90959090

实用性90909585

如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()

A.甲B.乙C.丙D.T

【答案】B

【解析】

【分析】利用加权平均数计算总成绩,比较判断即可

【详解】根据题意,得:

甲:90x60%+90x40%=90;

乙:95x60%+90x40%=93;

丙:90x60%+95x40%=92;

T:90X60%+85X40%=88;

故选8

【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键.

6.某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植

树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x,那么,符合题

意的方程是()

A.0.63(1+x)=0.68B.0.63(1+x)2=0.68

C.0.63(1+2%)=0.68D.0.63(1+2x)2=0.68

【答案】B

【解析】

【分析】设年平均增长率为x,根据2020年底森林覆盖率=2018年底森林覆盖率乘(l+x『,据此即可列

方程求解.

【详解】解:设年平均增长率为x,由题意得:

0.63(1+x)2=0.68,

故选:B.

【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可.

7.如图,点F在正五边形4BCDE的内部,,一A5/为等边三角形,则NAEC等于()

A.108°B.120°C.126°D.132°

【答案】c

【解析】

【分析】根据多边形内角和公式可求出/A8C的度数,根据正五边形的性质可得A8=BC,根据等边三角形

的性质可得N45F=NAFB=60。,AB=BF,可得BF=BC,根据角的和差关系可得出/FBC的度数,根据等腰

三角形的性质可求出/8FC的度数,根据角的和差关系即可得答案.

【详解】是正五边形,

(5-2)x180°

,NABC=------------------=108°,AB=BC,

5

•••,A斯为等边三角形,

NABF=ZAFB=60°,AB=BF,

:.BF=BC,ZFBC=ZABC-ZABF=4S°,

...NBFC=1(180°-ZFBC)=66°,

ZAFC=ZAFB+ZBFC=126°,

故选:C.

【点睛】本题考查多边形内角和、等腰三角形的性质、等边三角形的性质,熟练掌握多边形内角和公式是

解题关键.

8.如图,一次函数3=丘+方伏>。)的图象过点(TO),则不等式攵(彳-1)+匕>。的解集是()

X>-1C.x>0D.x>\

【答案】C

【解析】

【分析】先平移该一次函数图像,得到一次函数y=Z(x—1)+8(%>0)图像,再由图像即可以判断出

A(x—l)+h>0的解集.

【详解】解:如图所示,将直线y=h+/L>())向右平移1个单位得到y=1)+8(%>0),该图

像经过原点,

由图像可知,在y轴右侧,直线位于X轴上方,即y>0,

因此,当x>o时,Z(x-l)+/?>0,

【点睛】本题综合考查了函数图像的平移和利用一次函数图像求对应一元一次不等式的解集等,解决本题

的关键是牢记一次函数的图像与一元一次不等式之间的关系,能从图像中得到对应部分的解集,本题蕴含

了数形结合的思想方法等.

9.如图,AB为。。的直径,点P在4?的延长线上,2。,电)与。。相切,切点分别为C,D.若

Afi=6,PC=4,则sin/GW等于()

3

A.-

5

【答案】D

【解析】

【分析】连接OC,CP,。尸是OO的切线,根据定理可知NOCP=90°,ZCAP^ZPAD,利用三角形的

一个外角等于与其不相邻的两个内角的和可求NCAO=/COP,在母△OCP中求出sinNCOP即可.

【详解】解:连接。C,

CP,OP是。。的切线,则/OCP=90°,ZCAP=ZPAD,

:.ZCAD=2ZCAP,

':OA=OC

:.ZOAC=ZACO,

:.ZC0P=2ZCA0

J.ZCOP^ZCAD

AB=6

・・・003

在RtZ\C0P中,0C=3,PO4

:.0P=5.

..4

sinZ.CAD-sin/COP=—

5

故选:D.

【点睛】本题利用了切线的性质,锐角三角函数,三角形的外角与内角的关系求解.

10.二次函数丁=公2-2公+4。>0)的图象过4(一3,3),8(-1,%),。(2,%),。(4,乂)四个点,下列说法

一定正确的是()

A.若x%>o,则%>4>°B.若MR〉。,则y2y3>°

C.若必然<0,则X%<0D.若%>4<°,则x%<°

【答案】c

【解析】

【分析】求出抛物线对称轴,根据抛物线的开口方向和增减性,根据横坐标的值,可判断出各点纵坐标

值的大小关系,从而可以求解.

【详解】解:.二次函数丁=加一2"+c(a>0)的对称轴为:

x=--^-=--^-=1,且开口向上,

2a2a

二距离对称轴越近,函数值越小,

•••%>%>%>%,

A,若X%>0,则为”〉0不一定成立,故选项错误,不符合题意;

B,若,%>0,则%%〉0不一定成立,故选项错误,不符合题意;

C,若必然<0,所以乂>0,%<0,则M为<0一定成立,故选项正确,符合题意;

D,若%以<°,则,必<0不一定成立,故选项错误,不符合题意;

故选:C.

【点睛】本题考查了二次函数的图象与性质及不等式,解题的关键是:根据二次函数的对称轴及开口方向,

确定各点纵坐标值的大小关系,再进行分论讨论判断即可.

二、填空题:本题共6小题,每小题4分,共24分.

11.若反比例函数y=K的图象过点(1,1),则k的值等于

x

【答案】1

【解析】

【分析】结合题意,将点(1,1)代入到y=与,通过计算即可得到答案.

X

【详解】•.•反比例函数y=七的图象过点(1,1)

X

1=—,即左=1

1

故答案为:1.

【点睛】本题考查了反比例函数的知识;解题的关键是熟练掌握反比例函数图像的性质,从而完成求解.

12.写出一个无理数x,使得l<x<4,则x可以是(只要写出一个满足条件的x即可)

【答案】答案不唯一(如夜,肛1.010010001…等)

【解析】

【分析】从无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有兀的数,

【详解】根据无理数的定义写一个无理数,满足l<x<4即可;

所以可以写:

①开方开不尽的数:V2,

②无限不循环小数,1.010010(X)1.........,

TT

③含有兀的数一,等.只要写出一个满足条件的X即可.

2

故答案为:答案不唯一(如0,4,1.010()10001........等)

【点睛】本题考查了无理数的定义,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限

不循环小数,③含有兀的数.

13.某校共有1000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出

条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是.

【答案】270

【解析】

【分析】利用样本中的优秀率来估计整体中的优秀率,从而得出总体中的中长跑成绩优秀的学生人数.

27

【详解】解:由图知:样本中优秀学生的比例为:—=27%,

,该校中长跑成绩优秀的学生人数是:1000x27%=270(人)

故答案是:270.

【点睛】本题考查了利用样本估计总体的统计思想,解题的关键是:根据图中信息求出样本中优秀率作为

总体中的优秀率,即可求出总体中优秀的人数.

14.如图,AO是45c的角平分线.若NB=90°,BD=&,则点。到AC的距离是一.

BDC

【答案】百

【解析】

【分析】根据角平分线的性质,角平分线上的点到角的两边的距离相等,即可求得.

【详解】如图,过。作0EJ.AC,则。到AC的距离为OE

BDC

AD平分NC4B,ZB=90°,BD=y/3>

DE=BD=6

•••点。到AC的距离为百.

故答案为6.

【点睛】本题考查了角平分线的性质,点到直线的距离等知识,理解点到直线的距离的定义,熟知角平分

线的性质是解题关键.

15.已知非零实数x,y满足y则'二‘叶的值等于_________.

x+1xy

【答案】4

【解析】

【分析】由条件y变形得,x-产孙,把此式代入所求式子中,化简即可求得其值.

X+1

X

【详解】由y=—;得:xy+y=x即4・产孙

x+1f

.x-y-h3xy_xy+3xy_^xy_

xyxyxy

故答案为:4

【点睛】本题是求代数式的值,考查了整体代入法求代数式的值,关键是根据条件y=」7,变形为x-产孙,

X+1

然后整体代入.

16.如图,在矩形A3C。中,A6=4,AD=5,点E,尸分别是边A8,8。上的动点,点E不与4,8重合,

且石尸=AB,G是五边形AEFCD内满足GE=GE且N£Gb=90°的点.现给出以下结论:

①NGEB与NGF5一定互补;

②点G到边AB,8c的距离一定相等;

③点G到边AD,DC的距离可能相等;

④点G到边AB的距离的最大值为2及■

其中正确的是.(写出所有正确结论的序号)

【解析】

【分析】①利用四边形内角和为360°即可求证;

②过G作GM_LAB,GN±BC,证明△GME四△GNE即可得结论;

③分别求出G到边AROC的距离的范围,再进行判断;

④点G到边AB的距离的最大值为当GE_LA3时.,GE即为所求.

【详解】/EGF=9Q。GE=GF

:.NGEF=45。

①,四边形ABC。是矩形

.-.ZB=90°

­.2£<加=90。,四边形内角和为360。

ZGEB+ZGFB=180°

①正确.

②如图:过G作GMJ.A6,GN18C

:2GME=/GNF=9QP

ZGEB+ZGFB=\SO°,Z.GEM+Z.GEB=\^°

NGFN=GEM

又GE=GF

△GME乌△Gg/US)

:.GM=GN

即点G到边AB,BC的距离一定相等

②正确.

③如图:过G作

NG<AB--EF^2,GM<AD--EF^3

22

NG>AB-EFxsin45。=4—272,

GM>AD-EFxsin450=5-2y/2

.­.4-2V2<A^G<2,5-272<GM<3

而-2<5-2夜

所以点G到边AO,OC的距离不可能相等

③不正确.

④如图:

当GE_LA3时,点G到边的距离的最大

GE=E/xsin45°=4x也=2&

2

④正确.

综上所述:①②④正确.

故答案为①②④.

【点睛】本题考查了动点问题,四边形内角和为360。,全等三角形的证明,点到直线的距离,锐角三角函

数,矩形的性质,熟悉矩形的性质是解题的关键.

三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.

(1、一】

17.计算:V12+1^3—3|—.

【答案】也

【解析】

【分析】先化简二次根式,绝对值,负整式指数累,然后计算即可得答案.

【详解】V12+|V3-3|-(11

=273+(3-73)-3

=273+3-73-3

【点睛】本小题考查二次根式的化简、绝对值的意义、负指数幕等基础知识,熟练掌握运算法则是解题关

键.

18.如图,在,A8C中,力是边8C上的点,DE±AC,DF±AB,垂足分别为E,F,且

DE-DF,CE=BF.求证:/R=NC.

【答案】见解析

【解析】

【分析】由DE,AC,LAB得出N£)EC=N£)F8=90°,由S4S证明,DEC会..OEB,得出对应角

相等即可.

(详解】证明:IDE±AC,DF±AB,

;.NDEC=ZDFB=90°.

DE=DF,

在.DEC和ADFB中,<NOEC=NDFB,

CE=BF,

:.jDECADFB,

:./B=NC.

【点睛】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几

何直观.

x>3-2X(D

19.解不等式组:L-1X—3与

I26

【答案】l<x<3

【解析】

【分析】分别求出不等式组中各不等式的解集,再取公共部分即可.

【详解】解:解不等式》之3—2%,

3x23,

解得:xNl.

解不等式」x—1—一x—3<1,

26

3x—3—x+3<6,

解得:x<3.

所以原不等式组的解集是:l<x<3.

【点睛】本题考查了解一元一次不等式组,解题的关键是:准确解出各个不等式的解集,再取公共部分即

可.

20.某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.

(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱

数分别是多少?

(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:

应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?

【答案】(1)该公司当月零售农产品20箱,批发农产品80箱;(2)该公司应零售农产品300箱、批发农产

品700箱才能使总利润最大,最大总利润是49000元

【解析】

【分析】(1)设该公司当月零售农产品X箱,批发农产品y箱,利用卖出100箱这种农产品共获利润4600

元列方程组,然后解方程组即可;

(2)设该公司零售农产品,〃箱,获得总利润w元,利用利润的意义得到

卬=70加+40(1000-附=30m+40000,再根据该公司零售的数量不能多于总数量的30%可确定m的范

围,然后根据一次函数的性质解决问题.

【详解】解:(1)设该公司当月零售农产品x箱,批发农产品y箱.

70x+40y=4600,

依题意,得《

[x+y=100,

x=20,

解得

y=80.

所以该公司当月零售农产品20箱,批发农产品80箱.

(2)设该公司零售农产品机箱,获得总利润w元.则批发农产品的数量为(1000-加)箱,

••.该公司零售的数量不能多于总数量的30%

m<300

依题意,得卬=70m+40(1000-in)=30m+40000,/«<300.

因为30>0,所以w随着m的增大而增大,

所以加=300时,取得最大值49000元,

此时1000-/〃=700.

所以该公司应零售农产品300箱、批发农产品700箱才能使总利润最大,最大总利润是49000元.

【点睛】本题考查了一次函数的应用:建立一次函数模型,利用一次函数的性质和自变量的取值范围解决

最值问题;也考查了二元一次方程组.

21.如图,在ABC中,NAC3=90°.线段所是由线段AB平移得到的,点F在边上,△EED

是以EF为斜边的等腰直角三角形,且点。恰好在AC的延长线上.

(1)求证:ZADE=ZDFC:

(2)求证:CD=BF.

【答案】(1)见解析;(2)见解析

【解析】

【分析】(1)通过两角和等于90。,然后通过等量代换即可证明;

(2)通过平移的性质,证明三角形全等,得到对应边相等,通过等量代换即可证明.

【详解】证明:(D在等腰直角三角形功产中,NEDF=90。,

:.ZADE+ZADF=90°.

ZACB=90°,

ZDFC+ZADF=ZACB=90°,

;•ZADE^ZDFC.

(2)连接AE.

B

由平移性质得A£〃8F,A£=8F.

•••NE4D=ZACB=90°,

/.ZDCF=1800-Z4CB=90°,

ZEAD=ZDCF.

•;..££尸是等腰直角三角形,

'-DE=DF.

由(1)得ZADE=NDFC,

:.二AEg二CDF,

:.AE=CD,:.CD=BF.

【点睛】本小题考查平移的性质、直角三角形和等腰三角形的性质、全等三角形的判定和性质,解题的关

键是:正确添加辅助线、熟练掌握平移的性质和全等三角形的判定与性质.

22.如图,已知线段脑V=a,AR_LAK,垂足为a.

(1)求作四边形ABC。,使得点分别在射线AK,AR上,且AB=BC=a,ZABC=(O°,CD//AJB;

(要求:尺规作图,不写作法,保留作图痕迹)

(2)设P,Q分别为(1)中四边形ABCD的边A8,CD的中点,求证:直线相交于同一点.

【答案】(1)作图见解析;(2)证明见解析

【解析】

【分析】(1)根据A3=。,点8在射线AK上,过点A作A8=。;根据等边三角形性质,得A3=3C=AC,

分别过点A、B,。为半径画圆弧,交点即为点C;再根据等边三角形的性质作CD,即可得到答案;

(2)设直线6c与AZ)相交于点S、直线PQ与AO相交于点S',根据平行线和相似三角形的性质,得

AnAn

—=—,从而得S'O=S0,即可完成证明.

S'DSD

【详解】(1)作图如下:

四边形ABC。是所求作的四边形;

(2)设直线BC与AO相交于点S,

S(Sf)

DC//AB,

:.SBA^^SCD,

.SA_AB

"'~SD~~DC

设直线PQ与AO相交于点S',

S'APA

同理——=

S'DQD

;P,。分别为AB,C£>的中点,

APA^-AB,QD^-DC

22

.PAAB

"^D~15C

.S'A_SA

••诟一访’

.S'D+ADSD+AD

*'-SV---SD-'

.ADAD

••丽一砺’

/.S'D=SD,

•••点S与S'重合,即三条直线AO,8C,PQ相交于同一点.

【点睛】本题考查了尺规作图、等边三角形、直角三角形、平行线、相似三角形等基础知识,解题的关键

是熟练掌握推理能力、空间观念、化归与转化思想,从而完成求解.

23.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马

4,四,G,田忌也有上、中、下三匹马且这六匹马在比赛中的胜负可用不等式表示如下:

/I,>A2>B,>>C,>C2(注:A>5表示4马与8马比赛,A马获胜).一天,齐王找田忌赛马,约

定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王

三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上

马、中马、下马比赛,即借助对阵(。24,4与,626)获得了整场比赛的胜利,创造了以弱胜强的经典案

例.

假设齐王事先不打探田忌的“出马”情况,试回答以下问题:

(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求

其获胜的概率;

(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,

请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.

【答案】(1)田忌首局应出“下马”才可能在整场比赛中获胜,!;(2)不是,田忌获胜的所有对阵是

2

仁444也。3(。24也%44),(&4CAeG),(&综/GCA),(<£64,44),

(B2G,44,GA),—

o

【解析】

【分析】(1)通过理解题意分析得出结论,通过列举法求出获胜的概率;

(2)通过列举齐王的出马顺序和田忌获胜的对阵,求出概率.

【详解】(1)田忌首局应出“下马”才可能在整场比赛中获胜.

此时,比赛的所有可能对阵为:

(GA,&K刍cj,(&4,巴。1,44),

(。24,员4,4。1),(。24,4。1,四4),共四种.

其中田忌获胜的对阵有

(。24,44,与6;),(。24,名。1,44),共两种,

故此时田忌获胜的概率为《=;.

(2)不是.

齐王的出马顺序为4,男,a时,田忌获胜的对阵是(G4,44,Bg);

齐王的出马顺序为4,a,鸟时,田忌获胜的对阵是(。24,为。”44);

齐王的出马顺序为与,A,G时,田忌获胜的对阵是(44,。24,鸟£);

齐王的出马顺序为片,G,A时,田忌获胜的对阵是(44,B2G,G4);

齐王的出马顺序为G,A,与时,田忌获胜的对阵是(B2C„C24,44);

齐王的出马顺序为G,⑸,4时,田忌获胜的对阵是(,A4,GA)•

综上所述,田忌获胜的所有对阵是

GA.&BUB2cJ,(GA.HGMBJ,(44,。2。名《),

(44,员弓,。24),(与。],64,44),

齐王的出马顺序为4,g,c时,比赛的所有可能对阵是

(&A,B再,GG),(44,G4,4G),(鸟&,44,c2c.),

(与A,Gg,ACj,(64,44也3,(GA,44,AG),

共6种,同理,齐王的其他各种出马顺序,也都分别有相应的6种可能对阵,

所以,此时田忌获胜的概率R=3=’.

366

【点睛】本小题考查简单随机事件的概率等基础知识,考查推理能力、应用意识,考查统计与概率思想;

通过列举所有对阵情况,求得概率是解题的关键.

24.如图,在正方形ABC。中,E,尸为边A3上两个三等分点,点4关于的对称点为A',A4'的

延长线交8c于点G.

(1)求证:DEHA!F,

(2)求的大小;

(3)求证:AC=2AB.

【答案】(1)见解析;(2)45。;(3)见解析

【解析】

【分析】(1)设直线。石与AA相交于点T,证明ET是qAA'尸的中位线即可;

(2)连接FG,取FG的中点。,连接OA,O8,证明点4,F,B,G四点共圆即可;

(3)设AB=3a,则A£>=BC=3a,AF=2a,A£=8b=a,设4尸=左,则A4'=3Z,根据勾股定理

找到k与a的关系,根据一AFBsAGC列比例求解即可.

【详解】解:(1)设直线与AA'相交于点7,

•.•点A与4关于£>E对称,

,OE垂直平分4A,即r>E,A4',AT=7X'.

:E,尸为AB边上的两个三等分点,

•••AE=EF,

:.后丁是_44尸的中位线,

/.ET//AF,即。£〃AE.

(2)连接FG,•.•四边形ABC。是正方形,

AD=AB,ZDAB=ZABG=90°,ZDAT+ZBAG=90°,

DE工AA',/.ZDTA=90°,

ZADT+ZDAT=90°,:.ZADT=ZBAG.

:.^DAE^ABG,

;.AE=BG,又AE=EF=FB,

FB—BG,

/XEBG是等腰直角三角形,

ZGFB=45°.

':DE//AF,

AFA.AA,

ZFAG=90°.

取FG的中点。,连接。4',08,

在Rt.AFG和Rt_BFG中,

OA'=OF=OG=^FG,OB=OF=OG=^FG,

:.OA=OF=OG=OB,

.•.点A',F,B,G都在以尸G为直径的二。上,

/.NG4'B=NGFB=45°.

(3)设AB=3a,则AO=BC=3a,A/=2a,4E=Bf=a.

由(2)得BG-AE=a,

tanZBAG=—=—=即tanNAAF=1,.A'F1

.•------二一

AB3a33AA'3

设AN=Z,则A4'=3h在必ZVl'A尸中,由勾股定理,得AF=,

.•.麻~,k=第八警

在R/.ABG中,由勾股定理,得AGMQA^+BG?=回吐

T7...3>y/lOa

又♦AA=3k=------,

5

/.A'G^AG-AA'=4l0a-^^-=2^a,

55

.AN=3J

"A'G27nL2

5

CG-BC—CB—2a,

•BF_a_1

••—―,

CG2a2

.A'F_BF\

''~A^G~CG~2'

由(2)知,ZAFB+ZAGB=\SO0,

又ZAGC+ZAGB=180°,

:.ZAFB=ZAGC,

••一AFBs二AGC,

.A'BBF1

••-----=-------=—f

A!CCG2

/.AC=2AB.

【点睛】本小题考查正方形的性质、轴对称的性质、多边形内角与外角的关系、全等三角形的判定与性质、

相似三角形的判定与性质、平行线的判定与性质、三角形中位线定理、圆的基本概念与性质、解直角三角

形等基础知识,考查推理能力、运算能力,考查空间观念与几何直观,考查化归与转化思想.

25.已知抛物线y=ox2+bx+c与x轴只有一个公共点.

(1)若抛物线过点P(0,l),求。+人的最小值;

(2)已知点6(-2,1),鸟(2,—1),6(2,1)中恰有两点在抛物线上.

①求抛物线的解析式;

②设直线/:丁=丘+1与抛物线交于M,N两点,点A在直线丁=一1上,且NM4N=90°,过点A且与x

轴垂直的直线分别交抛物线和于点B,C.求证:AM48与△MBC的面积相等.

【答案】(1)-1;(2)①y=—7;②见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论