版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017年全国高考理科数学试题及答案-全国卷1绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。考试用时120分钟。注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;
如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;
如需改动,先划掉原来的答案,然后再写上新答案;
不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={x|x<1},B={x|},则A.B.C.D.2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.B.C.D.3.设有下面四个命题:若复数满足,则;
:若复数满足,则;
:若复数满足,则;
:若复数,则.其中的真命题为A.B.C.D.4.记为等差数列的前项和.若,,则的公差为A.1B.2C.4D.85.函数在单调递减,且为奇函数.若,则满足的的取值范围是A.B.C.D.6.展开式中的系数为A.15B.20C.30D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1B.A>1000和n=n+2C.A1000和n=n+1D.A1000和n=n+29.已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16B.14C.12D.1011.设xyz为正数,且,则A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推。求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂。那么该款软件的激活码是A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分。13.已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=.14.设x,y满足约束条件,则的最小值为.15.已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。若∠MAN=60°,则C的离心率为________。16.如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,,其中为抽取的第个零件的尺寸,.用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量服从正态分布,则,,.20.(12分)
已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点。若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.21.(12分)
已知函数ae2x+(a﹣2)ex﹣x.(1)讨论的单调性;
(2)若有两个零点,求a的取值范围.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4―4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若a=−1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.2017年普通高等学校招生全国统一考试理科数学参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A2.B3.B4.C5.D6.C7.B8.D9.D10.A11.D12.A二、填空题:本题共4小题,每小题5分,共20分。13.14.-515.16.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.解:(1)
由题意可得,化简可得,根据正弦定理化简可得:。(2)
由,因此可得,将之代入中可得:,化简可得,利用正弦定理可得,同理可得,故而三角形的周长为。18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.(1)证明:
,又,PA、PD都在平面PAD内,故而可得。又AB在平面PAB内,故而平面PAB⊥平面PAD。(2)解:
不妨设,以AD中点O为原点,OA为x轴,OP为z轴建立平面直角坐标系。故而可得各点坐标:,因此可得,假设平面的法向量,平面的法向量,故而可得,即,同理可得,即。因此法向量的夹角余弦值:。很明显,这是一个钝角,故而可得余弦为。19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,,其中为抽取的第个零件的尺寸,.用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量服从正态分布,则,,.解:(1)
由题意可得,X满足二项分布,因此可得(2)
由(1)可得,属于小概率事件,故而如果出现的零件,需要进行检查。由题意可得,故而在范围外存在9.22这一个数据,因此需要进行检查。此时:,。20.(12分)
已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点。若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)
根据椭圆对称性可得,P1(1,1)P4(1,)不可能同时在椭圆上,P3(–1,),P4(1,)一定同时在椭圆上,因此可得椭圆经过P2(0,1),P3(–1,),P4(1,),代入椭圆方程可得:,故而可得椭圆的标准方程为:。(2)由题意可得直线P2A与直线P2B的斜率一定存在,不妨设直线P2A为:,P2B为:.联立,假设,此时可得:
,此时可求得直线的斜率为:,化简可得,此时满足。当时,AB两点重合,不合题意。当时,直线方程为:,即,当时,,因此直线恒过定点。21.(12分)
已知函数ae2x+(a﹣2)ex﹣x.(1)讨论的单调性;
(2)若有两个零点,求a的取值范围.解:
(1)对函数进行求导可得。当时,恒成立,故而函数恒递减当时,,故而可得函数在上单调递减,在上单调递增。(2)函数有两个零点,故而可得,此时函数有极小值,要使得函数有两个零点,亦即极小值小于0,故而可得,令,对函数进行求导即可得到,故而函数恒递增,又,,因此可得函数有两个零点的范围为。(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4―4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若a=−1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.解:
将曲线C的参数方程化为直角方程为,直线化为直角方程为(1)当时,代入可得直线为,联立曲线方程可得:,解得或,故而交点为或(2)点到直线的距离为,即:,化简可得,根据辅助角公式可得,又,解得或者。23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.解:
将函数化简可得(1)
当时,作出函数图像可得的范围在F和G点中间,联立可得点,因此可得解集为。(2)
即在内恒成立,故而可得恒成立,根据图像可得:函数必须在之间,故而可得。以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
活动过程:
1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”
主持人口述谜语:
“双手抓不起,一刀劈不开,
煮饭和洗衣,都要请它来。”
主持人问:“谁知道这是什么?”生答:“水!”
一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”
主持人:我宣布:“水”是万物之源主题班会现在开始。
水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”
甲:如果没有水,我们人类就无法生存。
小熊说:我们动物可喜欢你了,没有水我们会死掉的。
花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。
主持人:下面请听快板《水的用处真叫大》
竹板一敲来说话,水的用处真叫大;
洗衣服,洗碗筷,洗脸洗手又洗脚,
煮饭洗菜又沏茶,生活处处离不开它。
栽小树,种庄稼,农民伯伯把它夸;
鱼儿河马大对虾,日日夜夜不离它;
采煤发电要靠它,京城美化更要它。
主持人:同学们,听完了这个快板,你们说水的用处大不大?
甲说:看了他们的快板表演,我知道日常生活种离不了水。
乙说:看了表演后,我知道水对庄稼、植物是非常重要的。
丙说:我还知道水对美化城市起很大作用。
2.主持人:水有这么多用处,你们该怎样做呢?
(1)(生):我要节约用水,保护水源。
(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。
(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。
(4)(生):我要用洗脚水冲厕所。
3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。
(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。
(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。
(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)
(4)一生说:主持人我们想给大家表演一个小品行吗?
主持人:可以,大家欢迎!请看小品《这又不是我家的》
大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”
旁白:“那又是谁家的呢?”
主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?
甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。
乙:上次我去厕所看见水龙头没关就主动关上了。
主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢?
齐:主动关好。
小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗?
主持人:可以。
小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗?
答:我要做节水的主人,不浪费一滴水。
小记者:请这位同学谈谈好吗?
答:今天参加班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。
小记者:你们谈得很好,我的收获也很大。我还有新任务先走了,同学们再见!
水跑上来说:同学们,今天我很高兴,我“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天!
主持人:你们还有发言的吗?
答:有。
生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。
动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的!
花草树木跑上场说:我们也不会忘记你的贡献!
水伯伯:(手舞足蹈地跳起了舞蹈)……同学们的笑声不断。
主持人:水伯伯,您这是干什么呢?
水伯伯:因为我太高兴了,今后还请你们多关照我呀!
主持人:水伯伯,请放心,今后我们一定会做得更好!再见!
4.主持人:大家欢迎老师讲话!
同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。
5.主持人宣布:“水”是万物之源主题班会到此结束。
6.活动效果:
此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵。
以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
活动过程:
1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”
主持人口述谜语:
“双手抓不起,一刀劈不开,
煮饭和洗衣,都要请它来。”
主持人问:“谁知道这是什么?”生答:“水!”
一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”
主持人:我宣布:“水”是万物之源主题班会现在开始。
水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”
甲:如果没有水,我们人类就无法生存。
小熊说:我们动物可喜欢你了,没有水我们会死掉的。
花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。
主持人:下面请听快板《水的用处真叫大》
竹板一敲来说话,水的用处真叫大;
洗衣服,洗碗筷,洗脸洗手又洗脚,
煮饭洗菜又沏茶,生活处处离不开它。
栽小树,种庄稼,农民伯伯把它夸;
鱼儿河马大对虾,日日夜夜不离它;
采煤发电要靠它,京城美化更要它。
主持人:同学们,听完了这个快板,你们说水的用处大不大?
甲说:看了他们的快板表演,我知道日常生活种离不了水。
乙说:看了表演后,我知道水对庄稼、植物是非常重要的。
丙说:我还知道水对美化城市起很大作用。
2.主持人:水有这么多用处,你们该怎样做呢?
(1)(生):我要节约用水,保护水源。
(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。
(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。
(4)(生):我要用洗脚水冲厕所。
3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。
(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。
(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。
(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)
(4)一生说:主持人我们想给大家表演一个小品行吗?
主持人:可以,大家欢迎!请看小品《这又不是我
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东松山职业技术学院《人力资源战略与规划》2023-2024学年第一学期期末试卷
- 广东生态工程职业学院《材料表界面》2023-2024学年第一学期期末试卷
- 广东青年职业学院《抽样技术与应用(实验)》2023-2024学年第一学期期末试卷
- 七年级上册《3.2.1 代数式的值》课件与作业
- 广东南华工商职业学院《比较公共行政学》2023-2024学年第一学期期末试卷
- 广东茂名幼儿师范专科学校《幼儿美术基础》2023-2024学年第一学期期末试卷
- 广东茂名农林科技职业学院《趣味素描》2023-2024学年第一学期期末试卷
- 广东岭南职业技术学院《马克思主义政治经济学原理》2023-2024学年第一学期期末试卷
- -业务员月工作总结简短
- 大学生公民素质教育(南京师范大学)学习通测试及答案
- 大学生旅游问卷调研报告
- 支原体检验报告
- 施工现场安全监督要点
- 单位物业服务项目投标方案(技术标)
- 患者突发昏迷应急预案演练脚本-
- 危险性较大的分部分项工程清单 及安全管理措施
- 中职英语语文版(2023)基础模块1 Unit 1 The Joys of Vocational School 单元测试题(含答案)
- 工程预结算课件
- 酒店宴会合同范本
- 货款互抵三方协议合同范本
- 七年级道德与法治论文2000字(合集六篇)
评论
0/150
提交评论