版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.2离散型随机变量的分布列(一)1精选ppt引例:
抛掷一枚骰子,所得的点数X有哪些值?X取每个值的概率是多少?解:那么X123456P⑵求出了X的每一个取值的概率.⑴列出了随机变量X的所有取值.
X的取值有1、2、3、4、5、6新课讲授列表2精选ppt1.离散型随机变量的分布列:设离散型随机变量X的所有可能的取值为X取每一个值xi(i=1,2,…,n)的概率为P(X=xi)=pi,
以表格的形式表示如下:Xx1x2…xi…xnPp1p2…pi…pn
这个表就称为离散型随机变量X的概率分布列,简称为X的分布列.注:1、分布列的构成:⑴从小到大列出了随机变量X
的所有取值.⑵求出了X的每一个取值的概率.3精选ppt2.概率分布还经常用图象来表示.O12345678p0.10.2(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象。(2)函数可以用解析式、表格或图象表示,离散型随机变量可以用分布列、等式或图象来表示。可以看出的取值范围{1,2,3,4,5,6},它取每一个值的概率都是。4精选ppt2.离散型随机变量分布列的性质:Xx1x2…xi…xnPp1p2…pi…pn1.离散型随机变量的分布列:⑴⑵3.X的分布列的表示法: (1)表格法; (2)解析式法: (3)图象法.P(X=xi)=pi(i=1,2,…,n)5精选ppt课堂练习:2、设随机变量的分布列为那么a的值为.1、设随机变量X的分布列如下:X1234P那么p的值为.6精选pptξ-101P例1:一盒中放有大小相同的红色、绿色、黄色三种小球,红球的个数是绿球个数的两倍,黄球个数是绿球个数的一半,现从该盒中随机取出一球,假设取出红球得1分,取出绿球得0分,取出黄球得-1分,试写出从该盒内随机取出一球所得分数ξ的分布列.解;设黄球个数为n,那么绿球个数为2n,红球个数为4n,盒中总球数为7n,ξ的所有可能取值为-1,0,1,所以ξ的分布列为:
说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.7精选ppt
一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,以X表示取出球的最大号码,求X的分布列.例2:解:X的所有取值为:3、4、5、6.{X=3}表示其中一个球号码等于“3〞,另两个都比“3〞小同理所以,X的分布列为X3456P8精选ppt求离散型随机变量的概率分布列的方法步骤:1、找出随机变量ξ的所有可能的取值2、求出各取值的概率3、列成表格.9精选ppt思考题:一个口袋里有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X表示取出的3个球中的最小号码,试写出X的分布列.10精选ppt解:随机变量X的可取值为1,2,3.当X=1时,即取出的三只球中的最小号码为1,那么其它两只球只能在编号为2,3,4,5的四只球中任取两只,故有P(X=1)==3/5;同理可得P(X=2)=3/10;P(X=3)=1/10.因此,X的分布列如下表所示X123P3/53/101/101,2,3,4,511精选ppt
根据射手射击所得环数ξ的分布列,有例3.
某一射手射击所得环数ξ的分布列如下:ξ45678910P0.020.040.060.090.280.290.22求此射手〞射击一次命中环数≥7〞的概率.分析:〞射击一次命中环数≥7〞是指互斥事件〞ξ=7〞,〞ξ=8〞,〞ξ=9〞,〞ξ=10〞的和.解:P(ξ=7〕=0.09,P(ξ=8〕=0.28,P(ξ=9〕=0.29,P(ξ=10〕=0.22,所求的概率为P(ξ≥7〕=0.09+0.28+0.29+0.22=0.8812精选ppt例4.一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此进行有限屡次,而随机终止,设分裂n次终止的概率是〔n=1,2,3,……〕,记ξ为原物体在分裂终止后所生成的子块数目,求P〔ξ≤10〕.解:依题意,原物体在分裂终止后所生成的数目ξ的分布列为说明:一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.13精选ppt练习:将一枚骰子掷2次,求随机变量两次掷出的最大点数X的概率分布.P654321X14精选ppt课堂小结:1.离散型随机变量的分布列.2.离散型随机变量的分布列的两个性质:
一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.⑴⑵15精选ppt教学反思:1.离散型随机变量的分布列的理解不是一个难点内容,难点内容是如何求出概率,因此应把重点和难点放在此处;2.注意给学生以独立思考的时间;3.分布列的应用不是难点,让学生独立解决.4.教学中注意渗透数学思想方法.16精选ppt2.1.2离散型随机变量的分布列(二)17精选ppt1.离散型随机变量的分布列.2.离散型随机变量的分布列的两个性质:
一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.⑴⑵Xx1x2…xi…xnPp1p2…pi…pn18精选ppt例1.在掷一枚图钉的随机试验中,令如果针尖向上的概率为p,试写出随机变量X的分布列解:根据分布列的性质,针尖向下的概率是(1-p),于是,随机变量X的分布列是:X01P1-pp象这样的分布列称为两点分布列.19精选ppt3.两点分布.(1)两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等,都可以用两点分布列来研究.X01P1-pp①两点分布又称0-1分布.(2)如果随机变量X的分布列为两点分布列,那么称X服从两点分布,而称p=P(X=1)为成功概率.②如果一个随机试验只有两个可能的结果,那么就可以用两点分布随机变量来研究它.③由于只有两个可能结果的随机试验叫伯努利试验,所以还称两点分布为伯努利分布.X只能取0、1,不能取其他数.20精选ppt例2.在含有5件次品的100件产品中,任取3件,试求:〔1〕取到的次品数X的分布列;〔2〕至少取到1件次品的概率.解(1)随机变量X的所有可能取值为0,1,2,3.从100件产品中任取3件结果数为从100件产品中任取3件,其中恰有k件次品的结果为从100件产品中任取3件,其中恰有k件次品的概率为21精选ppt例2.在含有5件次品的100件产品中,任取3件,试求:〔1〕取到的次品数X的分布列;〔2〕至少取到1件次品的概率.所以随机变量X的分布列是X0123P(2)P(X≥1)=P(X=1)+P(X=2)+P(X=3)≈0.14400;或P(X≥1)=1-P(X=0)=1-≈0.14400;如取小数,注意保存小数位不能太少,此外四舍五入时还要注意各个概率和等于1.22精选ppt4.超几何分布.一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,那么事件{X=k}发生的概率为
称分布列X01…mP为超几何分布列.如果随机变量X的分布列为超几何分布列,那么称随机变量X服从超几何分布.23精选ppt例3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.解:设摸出红球的个数为X,那么X的所有可能值为0、1、2、3、4、5,且X服从超几何分布.
一次从中摸出5个球,摸到k(k=0,1,2,3,4,5)个红球的概率为于是中奖的概率P(X≥3)=P(X=3)+P(X=4)+P(X=5)24精选ppt例3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.思考?如果要将这个游戏的中奖概率控制在55%左右,那么应该如何设计中奖规那么?分析:这是一个开放性问题,它要求根据中奖概率设计中奖规那么,所以问题的答案不唯一.比方用摸球的方法设计游戏,应包括每种颜色的球各是多少,从中取几个球,摸到几个红球才中奖等.也就是说M,N,n,{X=k}中的k都需要自已给出.因此,我们可以先固定N=30,M=10,n=5.,通过调整k到达目的.25精选ppt例3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.思考?如果要将这个游戏的中奖概率控制在55%左右,那么应该如何设计中奖规那么?我们可以先固定N=30,M=10,n=5.,通过调整k到达目的.∵从中摸5个球,至少摸到2个红球的概率为P(X≥2)=P(X=2)+P(X≥3)∵游戏规那么定为至少摸到2个红球就中奖,中奖的概率大约为55.1%.26精选ppt练习:课本P56页练习T3.课堂小结:
1.离散型随机变量的分布列及其性质;Xx1x2…xi…xnPp1p2…pi…pnX01P1-pp2.两点分布(或0-1分布或伯努利分布);3.超几何分布:X01…mP27精选
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 19069-2:2024 EN Plastics - Polypropylene (PP) moulding and extrusion materials - Part 2: Preparation of test specimens and determination of properties
- 2024室内外防水施工一体化承包协议版B版
- 2024室内木作隔墙项目承包协议样本版B版
- 2024年度个人房产交易协议样本版B版
- 2024年大数据分析服务合同服务内容与数据安全
- 2024年企业间劳务派遣协作合同样本一
- 2024年医院人力资源协议样式版B版
- 2024年专业代购服务协议范例版B版
- 2024年可再生能源发电项目投资与合作合同
- 2024劳动合同中约定知识产权保密事项
- 摩托车总体方案设计(刘权工作室)
- 电工电子综合实验_非线性电阻电路的应用—混沌电路
- 某公司清产核资招投标审计工作实施方案
- 慢性肾衰竭ppt课件
- 五年级英语whatwouldyoulike教案
- 《高分子物理》教学大纲
- 管道工程试运行检验报告(供水)
- 台钻日常维护保养点检记录表
- 【课件】年度安环部工作汇报(页)
- 大学体育课程教学计划(舞龙) (2)
- 《春晓》PPT课件
评论
0/150
提交评论