版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省娄底市2023-2024学年高一上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.2.已知a>0,那么2+3a+4A.23 B.C.2+23 D.3.已知函数,若,,,则,,的大小关系为A. B.C. D.4.已知,,且,,则的值是A. B.C. D.5.长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是()A. B.C. D.都不对6.不等式的解集是()A. B.C. D.7.已知圆(,为常数)与.若圆心与圆心关于直线对称,则圆与的位置关系是()A.内含 B.相交C.内切 D.相离8.已知,那么()A. B.C. D.9.在正内有一点,满足等式,,则()A. B.C. D.10.直线l过点A(3,4),且与点B(-3,2)的距离最远,则直线l的方程为()A.3x-y-5=0 B.3x-y+5=0C.3x+y+13=0 D.3x+y-13=0二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若正数x,y满足,则的最小值是_________12.已知集合,.若,则___________.13.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______14.函数是幂函数,且当时,是减函数,则实数=_______15.直线3x+2y+5=0在x轴上的截距为_____.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(Ⅰ)求的最小正周期及对称轴方程;(Ⅱ)当时,求函数的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.17.已知函数满足:.(1)证明:;(2)对满足已知的任意值,都有成立,求m的最小值.18.已知集合,(1),求实数的取值范围;(2)设,,若是的必要不充分条件,求实数的取值范围19.已知圆的标准方程为,圆心为,直线的方程为,点在直线上,过点作圆的切线,,切点分别为,(1)若,试求点的坐标;(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;(3)求证:经过,,三点的圆必过定点,并求出所有定点的坐标20.某工厂有甲,乙两条相互独立的产品生产线,单位时间内甲,乙两条生产线的产量之比为4:1.现采用分层抽样的方法从甲,乙两条生产线得到一个容量为100的样本,其部分统计数据如下表所示(单位:件).一等品二等品甲生产线76a乙生产线b2(1)写出a,b的值;(2)从上述样本的所有二等品中任取2件,求至少有1件为甲生产线产品的概率;(3)以抽样结果的频率估计概率,现分别从甲,乙两条产品生产线随机抽取10件产品记P1表示从甲生产线随机抽取的10件产品中恰好有5件一等品的概率,P2表示从乙生产线随机抽取的10件产品中恰好有5件一等品的概率,试比较P1和P21.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,求:(1)从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时候后,学生才能回到教室.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B2、D【解析】利用基本不等式求解.【详解】因为a>0,所以2+3a+4当且仅当3a=4a,即故选:D3、C【解析】根据函数解析式先判断函数的单调性和奇偶性,然后根据指数和对数的运算法则进行化简即可【详解】∵f(x)=x3,∴函数f(x)是奇函数,且函数为增函数,a=﹣f(log3)=﹣f(﹣log310)=f(log310),则2<log39.1<log310,20.9<2,即20.9<log39.1<log310,则f(209)<f(log39.1)<f(log310),即c<b<a,故选C【点睛】本题主要考查函数值的大小的比较,根据函数解析式判断函数的单调性和奇偶性是解决本题的关键4、B【解析】由,得,所以,,得,,所以,从而有,.故选:B5、B【解析】由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:故选:6、B【解析】利用一元二次不等式的解法即得.【详解】由可得,,故不等式的解集是.故选:B.7、B【解析】由对称求出,再由圆心距与半径关系得圆与圆的位置关系【详解】,,半径为,关于直线的对称点为,即,所以,圆半径为,,又,所以两圆相交故选:B8、C【解析】运用诱导公式即可化简求值得解【详解】,可得,那么故选:C9、A【解析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.10、D【解析】由题意确定直线斜率,再根据点斜式求直线方程.【详解】由题意直线l与AB垂直,所以,选D.【点睛】本题考查直线斜率与直线方程,考查基本求解能力.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、##【解析】由基本不等式结合得出最值.【详解】(当且仅当时,等号成立),即最小值为.故答案为:12、【解析】根据给定条件可得,由此列式计算作答.【详解】因集合,,且,于是得,即,解得,所以.故答案为:13、①.②.【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.14、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值15、【解析】直接令,即可求出【详解】解:对直线令,得可得直线在轴上截距是,故答案:【点睛】本题主要考查截距的定义,需要熟练掌握,属于基础题三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(Ⅰ)最小正周期是,对称轴方程为;(Ⅱ)时,函数取得最小值,最小值为-2,时,函数取得最大值,最大值为1.【解析】(Ⅰ)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质求出对称轴及最小正周期;(Ⅱ)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;【详解】解:(Ⅰ)由与得所以的最小正周期是;令,解得,即函数的对称轴为;(Ⅱ)当时,所以,当,即时,函数取得最小值,最小值为当,即时,函数取得最大值,最大值为.17、(1)证明见解析;(2).【解析】(1)由二次不等式恒成立,可得判别式小于等于0,化简即可得证;(2)由(1)可得,分别讨论或,运用参数分离和函数的单调性,可求得所求的最小值.【详解】(1)证明:.即恒成立.则,化简得;(2)由(1)得,当时,,令,则,令在上单调递增,所以,所以;当时,,所以,此时或0,,从而有,综上可得,m的最小值为.【点睛】方法点睛:本题考查不等式的证明,以及不等式恒成立问题,常运用参变分离的方法,运用函数的单调性,最值的方法得以解决.18、(1)(2)【解析】(1)化简集合,,由,利用两个集合左右端点的大小分类得出实数的取值范围(2)根据题意可得,推不出,即是的真子集,进而得出实数的取值范围【小问1详解】由题意,,且,或,或,实数的取值范围是【小问2详解】命题,命题,是的必要不充分条件,,推不出,即是的真子集,,解得:实数的取值范围为19、(1)或;(2)或;(3)详见解析【解析】(1)点在直线上,设,由对称性可知,可得,从而可得点坐标.(2)分析可知直线的斜率一定存在,设其方程为:.由已知分析可得圆心到直线的距离为,由点到线的距离公式可求得的值.(3)由题意知,即.所以过三点的圆必以为直径.设,从而可得圆的方程,根据的任意性可求得此圆所过定点试题解析:解:(1)直线的方程为,点在直线上,设,由题可知,所以,解之得:故所求点的坐标为或(2)易知直线的斜率一定存在,设其方程为:,由题知圆心到直线的距离为,所以,解得,或,故所求直线的方程为:或(3)设,则的中点,因为是圆的切线,所以经过三点的圆是以为圆心,以为半径的圆,故其方程为:化简得:,此式是关于的恒等式,故解得或所以经过三点的圆必过定点或考点:1直线与圆的位置关系问题;2过定点问题20、(1)a=4,b=18;(2)1415(3)P1【解析】(1)根据题意列出方程组76+a+b+2=10076+a=4b+2,从而求出a,(2记C为“至少有1件为甲生产线产品”这一事件,首先列出从6件二等品中任取2件的所有结果,然后再找出事件C所包含是基本事件,从而利用古典概型的概率公式即可求出答案.(3)根据样本中甲,乙产品一等品的概率,同时结合二项分布即可比较大小.【小问1详解】由题意,知76+a+b+2=10076+a=4b+2,解得【小问2详解】记样本中甲生产线的4件二等品为A1,A2,从6件二等品中任取2件,所有可能的结果有15个,它们是:A1A3记C为“至少有1件为甲生产线产品”这一事件,则C中的结果有1个,它是B1所以PC【小问3详解】P121、(1),(2)【解析】分析】(1)利用函数图像,借助于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市市辖区(2024年-2025年小学五年级语文)人教版质量测试(上学期)试卷及答案
- 一年级数学计算题专项练习集锦
- 江苏省南通市2024-2025学年七年级上学期期中英语试卷(含答案解析)
- 圆珠笔产业运行及前景预测报告
- 人工草坪产业深度调研及未来发展现状趋势
- 实验室用血液和血液成分过滤器产业运行及前景预测报告
- 化妆用防晒乳液产业深度调研及未来发展现状趋势
- 儿童帽产品供应链分析
- 干燥装置和设备市场发展预测和趋势分析
- 分隔层饰盘市场发展预测和趋势分析
- 排球正面上手发球课件
- GB/T 16915.1-2024家用和类似用途固定式电气装置的开关第1部分:通用要求
- 某工业园建设可行性研究报告
- 投资建厂房收租合同模板
- 行政职业能力测试分类模拟题462
- 山东省菏泽市巨野县2023-2024学年八年级上学期期中考试数学试卷(含解析)
- 企业员工宿舍租赁管理协议
- 2025届高考语文一轮复习:小说物象含义及作用
- 湖北省襄阳市2023-2024学年六年级上学期英语期中试卷(含答案)
- 民航与机场管理作业指导书
- 2023年甘肃省庆阳市西峰区兰州路街道东门村社区工作人员(综合考点共100题)模拟测试练习题含答案
评论
0/150
提交评论