版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山市乐亭一中2023-2024学年高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数f(x)=ln(-x)-x-2的零点所在区间为()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)2.定义域为R的偶函数满足对任意的,有=且当时,=,若函数=在(0,+上恰有六个零点,则实数的取值范围是A. B.C. D.3.若,,且,则A. B.C. D.4.已知,若实数满足,且,实数满足,那么下列不等式中,一定成立的是A. B.C. D.5.设函数,则下列函数中为奇函数的是()A. B.C. D.6.如图,一个半径为3m的筒车按逆时针方向每分转1.5圈,筒车的轴心O距离水面的高度为2.2m,设筒车上的某个盛水筒P到水面的距离为d(单位:m)(在水面下则d为负数),若从盛水筒P刚浮出水面时开始计算时间,则d与时间t(单位:s)之间的关系为,则其中A,,K的值分别为()A.6,,2.2 B.6,,2.2C.3,,2.2 D.3,,2.27.在正方体中,为棱的中点,则A. B.C. D.8.若,,则的值为()A. B.-C. D.9.已知是第二象限角,,则()A. B.C. D.10.已知函数,则该函数的零点位于区间()A. B.C. D.11.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.12.化简()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设偶函数的定义域为,函数在上为单调函数,则满足的所有的取值集合为______14.若,且α为第一象限角,则___________.15.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______16.在正方体中,则异面直线与的夹角为_________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知直线(1)求证:直线过定点(2)求过(1)的定点且垂直于直线直线方程.18.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该简车抽象为圆O,筒车上的盛水桶抽象为圆O上的点P,已知圆O的半径为,圆心O距离水面,且当圆O上点P从水中浮现时(图中点)开始计算时间(1)根据如图所示的直角坐标系,将点P到水面的距离h(单位:m,在水面下,h为负数)表示为时间t(单位:s)的函数,并求时,点P到水面的距离;(2)在点P从开始转动的一圈内,点P到水面的距离不低于的时间有多长?19.已知,(1)求,的值;(2)求的值20.已知.(1)求函数的单调递减区间;(2)求函数的最值并写出取最值时自变量的值;(3)若函数为偶函数,求的值.21.已知角的终边经过点.(1)求的值;(2)求的值.22.已知1与2是三次函数的两个零点.(1)求的值;(2)求不等式的解集.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】先计算,,根据函数的零点存在性定理可得函数的零点所在的区间【详解】函数,时函数是连续函数,,,故有,根据函数零点存在性定理可得,函数的零点所在的区间为,故选:【点睛】本题主要考查函数的零点存在性定理的应用,不等式的性质,属于基础题2、C【解析】因为=,且是定义域为R的偶函数,令,则,解得,所以有=,所以是周期为2的偶函数,因为当时,=,其图象为开口向下,顶点为(3,0)的抛物线,因为函数=在(0,+上恰有六个零点,令,因为所以,所以,要使函数=在(0,+上恰有六个零点,如图所示:只需要,解得.故选C.点睛:本题考查函数的零点及函数与方程,解答本题时要注意先根据函数给出的性质对称性和周期性,画出函数的图象,然后结合函数的零点个数即为函数和图象交点的个数,利用数形结合思想求得实数的取值范围.3、A【解析】∵,∴2既是方程的解,又是方程的解令a是方程的另一个根,b是方程的另一个根由韦达定理可得:2×a=6,即a=3,∴2+a=p,∴p=52+b=−6,即b=−8,∴2×b=−16=−q,∴q=16∴p+q=21故选:A4、B【解析】∵在上是增函数,且,中一项为负,两项为正数;或者三项均为负数;即:;或由于实数x0是函数的一个零点,当时,当时,故选B5、A【解析】分别求出选项的函数解析式,再利用奇函数的定义即可得选项.【详解】由题意可得,对于A,是奇函数,故A正确;对于B,不是奇函数,故B不正确;对于C,,其定义域不关于原点对称,所以不是奇函数,故C不正确;对于D,,其定义域不关于原点对称,不是奇函数,故D不正确.故选:A.6、D【解析】根据实际含义分别求的值即可.【详解】振幅即为半径,即;因为逆时针方向每分转1.5圈,所以;;故选:D.7、C【解析】画出图形,结合图形根据空间中的垂直的判定对给出的四个选项分别进行分析、判断后可得正确的结论【详解】画出正方体,如图所示对于选项A,连,若,又,所以平面,所以可得,显然不成立,所以A不正确对于选项B,连,若,又,所以平面,故得,显然不成立,所以B不正确对于选项C,连,则.连,则得,所以平面,从而得,所以.所以C正确对于选项D,连,若,又,所以平面,故得,显然不成立,所以D不正确故选C【名师点睛】本题考查线线垂直的判定,解题的关键是画出图形,然后结合图形并利用排除法求解,考查数形结合和判断能力,属于基础题8、D【解析】直接利用同角三角函数关系式的应用求出结果.【详解】已知,,所以,即,所以,所以,所以.故选:D.9、B【解析】利用同角三角函数基本关系式求解.【详解】因为是第二象限角,,且,所以.故选:B.10、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题11、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题12、D【解析】利用辅助角公式化简即可.【详解】.故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】∵,又函数在上为单调函数∴=∴,或∴∴满足的所有的取值集合为故答案为14、【解析】先求得,进而可得结果.【详解】因为,又为第一象限角,所以,,故.故答案为:.15、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:16、【解析】先证明,可得或其补角即为异面直线与所成的角,连接,在中求即可.【详解】在正方体中,,所以,所以四边形是平行四边形,所以,所以或其补角即为异面直线与所成的角,连接,由为正方体可得是等边三角形,所以.故答案为:【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)见解析;(2).【解析】⑴将直线化为,解不等式组即可得证;⑵由(1)知定点为,结合题目条件计算得直线方程解析:(1)根据题意将直线化为的解得,所以直线过定点(2)由(1)知定点为,设直线的斜率为k,且直线与垂直,所以,所以直线的方程为18、(1),m(2)4s【解析】(1)根据题意先求出筒车转动的角速度,从而求出h关于时间t的函数,和时的函数值;(2)先确定定义域,再求解不等式,得到,从而求出答案.【小问1详解】筒车按逆时针方向匀速转动.每分钟转动5圈,故筒车每秒转动的角速度为,故,当时,,故点P到水面的距离为m【小问2详解】点P从开始转动的一圈,所用时间,令,其中,解得:,则,故点P到水面的距离不低于的时间为4s.19、(1),(2)【解析】(1)首先利用诱导公式得到,再根据同角三角函数的基本关系计算可得;(2)利用诱导公式化简,再将弦化切,最后代入求值即可;【小问1详解】解:因为,,所以,又解得或,因为,所以【小问2详解】解:20、(1);(2)当时,;当时,;(3).【解析】(1)利用二倍角公式、辅助角公式化简函数,再利用正弦函数的单调性求解作答.(2)利用(1)中函数,借助正弦函数的最值计算作答.(3)求出,再利用三角函数的奇偶性推理计算作答.【小问1详解】依题意,,由得:,所以函数的单调递减区间是.【小问2详解】由(1)知,当,即时,,当,即时,,所以,当时,,当时,.【小问3详解】由(1)知,,因函数为偶函数,于是得,化简整理得,而,则,所以的值是.21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校工作总结和工作计划(6篇)
- 读书活动的心得体会
- 教学工作心得体会总结8篇
- 新教材高考地理二轮复习综合题专项训练七简易绘图类含答案
- 四川省泸州市江阳区泸州老窖天府中学2024-2025学年七年级上学期期中地理试题(含答案)
- 河南省安阳市林州市湘豫名校联考2024-2025学年高三上学期11月一轮诊断考试 数学(含答案)
- 2015-2024年高考数学总复习:数列小题综合(学生卷)
- 个人信用贷款合同模板
- 户外照明产品购销合同模板
- 2024年公司运输司机聘用合同
- 生态环境执法大练兵比武竞赛理论备赛试题库(浓缩500题)
- 普法课件:统计法培训
- 《我和鸟类做朋友》(教学设计)-2023-2024学年五年级上册综合实践活动粤教版
- 关于合同违约扣款的函件
- NB-T33004-2013电动汽车充换电设施工程施工和竣工验收规范
- 2024版劳动合同合同范本
- 古希腊文明智慧树知到期末考试答案章节答案2024年复旦大学
- 小学数学一年级上册数学试卷可直接打印
- DZ∕T 0258-2014 多目标区域地球化学调查规范(1:250000)(正式版)
- 大学生生涯发展展示 (修改)
- 小学作业设计比赛评分标准
评论
0/150
提交评论