先进复合材料的研究与应用_第1页
先进复合材料的研究与应用_第2页
先进复合材料的研究与应用_第3页
先进复合材料的研究与应用_第4页
先进复合材料的研究与应用_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

先进复合材料的研究与应用

20世纪70年代末,先后开发了碳纤维、碳硅纤维、氧化锌纤维、硼纤维、纤维芳伦纤维、高密度聚苯乙烯纤维等高性能增强材料,并以高性能树脂、金属和陶瓷为基础。先进材料。这种先进复合材料具有比玻璃纤维复合材料更好的性能,是用于飞机、火箭、卫星、飞船等航空航天飞行器的理想材料。ACM的发展方向可以用“7化”来概括,即碳纤维低成本规模化;玻璃纤维高性化;高性能纤维杂混改性化;ACM应用领域扩展化;高性能树脂杂混改性化;结构设计实用化和制造装备现代化。碳纤维在各工业领域的应用量及其份额是工业技术水平和先进技术民用化的标志之一,美国、日本、中国和世界整体碳纤维应用份额见表1。未来5年中国碳纤维在各应用领域的用量、份额及其增长率变化见表2、表3。ACM的典型代表是环氧树脂基碳纤维复合材料,经过多年使用验证,环氧树脂基体以其综合性能优异、工艺性良好、价格低等诸多优点,在马赫数1.5以下飞机上的用量远远大于双马来酰胺树脂基体(BMI),以A400M、波音787飞机为例,复合材料分别占飞机结构重量的36%和50%,其中,复合材料结构居主导地位的一直是刚性双酚A二缩水甘油醚型环氧树脂。如美国“三叉戟-1”、“三叉戟-2”导弹以及“飞马座”火箭采用的HBRF-55A配方就以E-PON826为主。多年来各国都在通过加入柔性单元改进环氧树脂的韧性,通过加入新型刚性链单元结构或使用芴型芳香胺固化剂来提高耐热性,并分别取得了预期的效果。1国内外先进复合材料的研究与应用情况先进复合材料的研究应用主要集中于国防工业。高性能树脂基复合材料,主要是碳纤维和芳纶纤维增强环氧树脂,多官能团环氧树脂和BMI。复合材料性能稳定,已大量投入应用,相当于T300/聚酰亚胺PMR-15性能的复合材料已研制成功,一批高性能的热塑性树脂基复合材料,如PEEK、PECK、PPS等正在从实验室走向实用。据介绍,先进复合材料构件正在由次承力件向主承力件过渡。在成型工艺方面,先进复合材料借助玻璃钢成型技术逐步实现由手糊到机械化自动化的转变。但总的水平与国外先进技术还有一定距离。高性能聚合物基复合材料在航空航天工业的用量占其全部用量的80%。国内外先进复合材料在航空航天领域的应用情况见表4。鉴于4,4’-二氨基二苯甲烷四缩水甘油胺(TGDDM)的性价比,该材料可能是最实用的高性能环氧树脂。TGDDM具有优良的耐热性,长时高温性能和机械强度保持率,固化收缩低,化学和辐射稳定性好,还可用于高性能结构胶粘剂,结构层压板和耐高能辐射材料。1.1复合材料机翼1986年设计的C-17是上世纪先进大型军用运输机的典型代表,限于当时的水平,复合材料主要用于次要结构,如雷达罩、整流罩、操纵面、口盖、翼梢小翼蒙皮等。复合材料重约7258k,占该机结构重量8.1%。树脂基复合材料从非承力结构发展到次承力构件。在复合材料中碳纤维增强复合材料约占结构重量6%,玻璃纤维塑料、Kevlar纤维增强材料占2%。欧洲EADS正在研究的A400M属于新一代大型军用运输机,在材料应用技术上有了一个新的飞跃,主要表现为先进复合材料占结构重量的35%~40%。与C-17不同的是,在A400M上,碳纤维复合材料用于一些主承力结构,而C-17的复合材料结构重量比仅为8%,且主要用于操纵面及次要结构。A400M的机身仍由传统的铝合金制成,但却开创了采用碳纤维复合材料制造大型运输机机翼的先河,机翼长达19m,令业界颇为瞩目。在A400M运输机上,特别值得提出的是复合材料机翼,碳纤维复合材料占机翼结构重量比例高达85%,开创了使用复合材料为主要材料制造大型运输机机翼的先例。采用碳纤维制造的机翼,重量是同等强度铝合金机翼的75%至80%,并且不会产生金属疲劳,先进复合材料的广泛应用对于减轻结构重量相当有利。在A400M的复合材料设计和制造中,广泛采用了计算机辅助设计软件,如土耳其航空航天工业公司就使用美国维斯特吉公司的FiberSlM软件来进行设计。土耳其航空航天工业公司作为空客A400M项目的签约合作方,在CATIAV5CAD模拟环境中利用该软件为A400M运输机设计了副翼及扰流片等气动控制面。A400M的机翼除前缘、前后缘支承结构及铰链采用铝合金外,其气动舵面、机翼蒙皮、桁条以及中央翼盒与外翼盒接头的某些部件也均为复合材料。但为了确保强度安全,A400M机翼与机身的接头采用钛合金制造并用螺栓以双钩环固定,以保证在断裂时有双余度保险。该机翼蒙皮与加强筋组成一体固定在碳纤维复合材料翼梁上,翼肋仍采用铝合金制造。因其主要受压应力,此时用复合材料与用铝合金并无大的不同。除机翼外,A400M的尾部货舱门、起落架舱门、整流罩以及螺旋桨也采用高强度复合材料来制造。目前,空客公司正在进行一项更为“大胆”的重要计划—研制全碳纤维复合材料机翼,并已制造出6.2m的翼盒验证件。A400M的T型尾翼设计为加强结构,并大量采用复合材料,碳纤维复合材料占结构重量比例高达97%~98%。垂尾主要由1个三粱主盒段、1个可拆卸的前缘、后缘隔板和一块方向舵组成,垂直尾翼的根部与后机身上一个机械加工的平直翼面连接。除了垂尾前缘和铰链,所有这些结构部件主要由复合材料制造。垂尾前缘是金属/复合材料的复合型部件,可改善抗冲击和防腐蚀性能,在垂尾翼尖装有预警保障措施短舱。方向舵是带铝合金铰链连接肋的碳纤维加强型结构,由两台液压伺服作动筒和一台电动马达驱动。A400M的垂尾面积较大,有着非常不错的航向稳定性。水平尾翼为铝合金中央结构翼盒和两个复合材料的外侧盒段结构,中央盒段为水平尾翼与垂直安定面的连接提供安装固定结构。水平尾翼两侧各有一块升降舵,其主结构也采用了碳纤维复合材料。A400M运输机所用环氧基体碳纤维复合材其主要用于翼梁、纵梁、机翼箱型梁、升降舵蒙皮、气动舵面、机翼蒙皮、桁条以及中央翼盒与外翼盒接头的某些部件。1.2复合材料的使用为满足新一代战斗机对高机动性、超音速巡航及隐身的要求,进入90年代后,西方的战斗机无一例外的大量采用复合材料结构,用量一般都在25%以上,有的甚至达到35%,结构减重效率达30%。应用部位几乎遍布飞机的机体,包括垂直尾翼、水平尾翼、机身蒙皮以及机翼的壁板和蒙皮等。如美国第4代战斗机F-22复合材料用量已达到24%,而EF2000更高达43%,EF2000除鸭翼外,机身、机翼、腹鳍、方向舵都采用复合材料,结构“湿润”表面的70%为复合材料。阵风也是如此,70%的“湿润”表面为复合材料,约947kg之重。F-35的复合材料几乎覆盖了整个飞机外表面。1.3复合材料+传统知识国外目前研制的无人机以复合材料和传统铝合金的混合结构为主。如“捕食者”“全球鹰”等均是如此。其中“全球鹰”的机翼和尾翼由石墨/环氧复合材料制造,而机身仍采用传统铝合金,复合材料占结构重量的65%。无人战斗机是未来航空武器的一个重点发展方向。为满足采购政策、隐身性能、机动性、生存力对材料的特殊需求,为尽可能地降低结构重量、提高燃油装载量,无人战斗机结构的一个显著特点就是大量应用复合材料。以波音公司的X-45A为例,除机身的龙骨、梁和隔框采用高速切削铝合金外,其余的机体结构都是由复合材料制成。诺斯罗普·格鲁门公司的X-47A的机体除一些接头采用铝合金外,整个机体几乎全部采用了复合材料。1.4升力系统及传动系统直升机采用复合材料不仅可减重,且对于改善直升机抗坠毁性能意义重大,因而复合材料在直升机结构中应用更广、用量更大,不仅机身结构,而且由桨叶和桨毂组成的升力系统、传动系统也大量采用树脂基复合材料。H360、S-75、BK-117和V-22等直升机均大量采用了复合材料,如顷转旋翼飞机V-22用复合材料近3000kg,占结构总重的45%左右,法德合作研制的“虎”式武装直升机,复合材料用量更高达77%。1.5飞机防热剂组成以NASA开发的第2代可重复使用航天飞机为例,油箱内衬为复合材料。在推进系统中将采用陶瓷基复合材料发射斜轨、金属基复合材料机匣以及树脂基复合材料涵道。此外还将采用复合材料电子设备舱。第3代可重复使用航天飞机将为一智能结构,具有自适应热防护系统及智能化无损检测装置,自愈合的飞机结构及表面。发动机材料将可能使用经冷却的复合材料、金属基复合材料加力燃烧室壳体、超高温复合材料。结构材料将包括超高温树脂基复合材料、低成本耐腐蚀热防护系统复合材料液氧油箱。美国高超声速飞行器X-43是由超燃冲压发动机作动力装置的验证机。其油箱/机身由石墨/环氧框架及蒙皮组成。蒙皮外再覆以热防护系统。飞机上翼面热防护层为可剪裁的先进绝缘毡,下翼面为内多层屏蔽绝缘物。后者是正处于开发中的防热材料,由C/SiC外面板,中介陶瓷屏以及先进聚酰亚胺泡沫内衬。中介陶瓷屏覆以贵金属以降低其热辐射。机翼及垂尾由钛基复合材料制成,并有1个由二硼化锆制成的前缘。1.6树脂基复合材料材料在火箭和导弹上使用碳复合材料减重效果十分显著。因此,采用碳纤维复合材料将大大减轻火箭和导弹的惰性重量,既减轻发射重量又可节省发射费用或携带更重的弹头或增加有效射程和落点精度。利用纤维缠绕工艺制造的环氧基固体发动机罩耐腐蚀、耐高温、耐辐射、且密度小、刚性好、强度高、尺寸稳定。再如导弹弹头采用了环氧基及环氧酚醛基纤维增强材料。在树脂基复合材料中,环氧树脂(EP)是巡航导弹弹体结构所用复合材料中最主要的基体材料,在所有树脂基复合材料结构中所占的比例高达90%。但随着飞行速度的提高,超声速巡航导弹研究的日益深入,目前树脂基复合材料的研究重点已由环氧树脂向BMI、聚酰亚胺(PI)树脂、氰酸酯树脂转移。Bryte公司最近开发了一系列氰酸酯树脂基体,玻璃化转变温度达335℃,短时工作温度达300℃,可以代替BMI和聚酰亚胺,氰酸酯树脂已成为未来结构/功能一体化的有力候选材料,可以作为超声速巡航导弹复合材料舵面和弹体通常选用的树脂。耐高温树脂基复合材料是超声速巡航导弹弹体结构的主选材料,以BMI、PI树脂为主。目前国内的PI树脂存在着性能不稳定、工艺操作性差等诸多问题,难以成型大尺寸、复杂型面的复合材料结构,不宜作为超声速巡航导弹主体结构树脂。从美国雷锡恩导弹系统公司的经验来看,在近10年期间将把高温树脂基复合材料基体的研究集中于BMI,取代以往研究的PI,充分利用BMI的可加工性、低成本、易操作性。BMI树脂的耐温性能能达到300℃左右,完全可以满足低马赫数(≤2Ma)超声速巡航导弹弹体结构的需求。耐高温有机树脂基透波复合材料体系中,美国研制开发的PI树脂和聚苯并咪唑(PBI)树脂及俄罗斯研制的改性酚醛树脂都具有良好的透波性能和工艺性能,已在宽频天线罩(HARM、ALARM、KP-1)上获得应用,使用温度达到600℃。1.7天线、支架和支撑结构宇航工业中除烧蚀复合材料外,高性能复合材料应用也很广泛。如三叉戟导弹仪器舱锥体采用C/EP后减重25%~30%,省工50%左右。还用作仪器支架及三叉戟导弹上的陀螺支架、弹射筒支承环,弹射滚柱支架、惯性装置内支架和电池支架等55个辅助结构件。由于减重,使射程增加342km。德尔塔火箭的保护罩和级间段亦由C/EP制造。美国卫星和飞行器上的天线、天线支架、太阳能电池框架和微波滤波器等均采用C/EP定型生产。国际通讯卫星V上采用C/EP制作天线支撑结构和大型空间结构。宇航器“空中旅行者”的高增益天线次反射器和蜂窝夹层结构的内外蒙皮采用了K-49/EP。航天飞机用Nomex蜂窝C/EP复合材料制成大舱门,C/EP尾舱结构壁板等。人造卫星使用碳复合材料制造卫星整流罩、展开式太阳能电池板,而宇宙飞船使用碳复合材料制造防热材料、太阳能电池阵基板和航天飞机舱门、机械臂和压力容器等。1.8结构材料—航空发动机航空发动机使用碳纤维增强树脂基复合材料取代金属材料可以有效减轻发动机重量,降低燃料消耗,增加航程。有资料报道,发动机减轻1磅(0.454kg)重量,飞机则可减轻10~20磅重量。从70年代初,复合材料就成为TF39、F103特别是GE36UDF发动机研制计划的一部分,在这些发动机上积累了经验之后,在GE90的风扇叶片上成功使用了高性能韧化环氧复合材料。此外,在F119风扇机匣、遄达发动机的风扇机匣包容环及反推力装置上也广泛采用了树脂基复合材料。近期开发的波音787的动力装置GEnx的风扇机匣及风扇叶片,将由碳纤维/环氧树脂基复合材料制成。除减重外,复合材料还表现出良好的韧性及耐蚀性。至于陶瓷基复合材料等超高温复合材料,目前已在M88、F119等发动机尾喷管等静止件上获得应用。随着飞行器向高空、高速、无人化、智能化、低成本化方向发展,复合材料的地位会越来越重要。国外预计,在下一代飞机上,复合材料将扮演主角,目前采用全复合材料飞行器的计划正处于酝酿之中。1.9材料材料的使用民用航空材料方面由于采用环氧基碳纤维增强材料,带来非常明显的性价比,欧洲空中客车公司提出更多地用轻质高强材料使机身减重30%,整个飞行成本可降低40%。空客的储备技术还说明,机身达到减重15%,成本可下降15%的目标。空客在使用复合材料方面一直走在业界前头,A380飞机约25%由复合材料制造,其中22%为环氧基体碳纤维复合材料,工程塑料基碳纤维增强塑料比重>1%。A380在后压力舱后部的后机身首次采用了复合材料和先进金属材料,使用这些复合材料减轻了机身重量,大大减少了油耗和排放,并降低了运营成本。再如波音B777飞机上采用碳纤维增强工程塑料量达9.9t,占结构总质量的11%。而波音B787飞机上采用环氧树脂基、双马来酰亚胺基体碳纤维复合材料和热塑性工程塑料,其用量达机重的50%。环氧树脂基、双马来酰亚胺基碳纤维复合材料主要用来制造机翼、机身、地楞横梁等部位的结构材料,内部装饰上也大面积使用了热塑性工程塑料。2中国航空航天部的先进材料2.1tgddm环氧体系我国高性能复合材料应用于航空业已有20多年历史,目前军用歼击机用量达25%,直升机最高用量可达50%,民用客机也达到10%~20%,主要用于起落架舱门、内外侧副翼、方向舵、升降舵、扰流板等。国内许多学者从事TGDDM环氧体系的研究与开发工作,并取得了较大成绩。特别值得指出的是,我国科技工作者经多年研究,开发了商品名为TDE-85的三官能团环氧树脂,其化学名为4,5-环氧己烷-1,2-二甲酸二缩水甘油酯,其分子中含有2个反应活性高的缩水甘油酯基和一个反应活性与前者差别很大的脂环环氧基。该树脂是一种工艺性、耐热性均很优异的高性能环氧树脂。西北工业大学、哈尔滨玻璃钢研究所等单位用TDE-85环氧树脂为基体材料制作的复合材料,应用在某些有特殊需要的产品上已获得令人满意的结果。2.2材料及性能要求THC-400,THC-800系列,TH-30系列,THH系列,THF等是陕西太航阻火聚合物有限公司开发的专用于复合材料的耐烧蚀耐高温洁净阻燃韧性环氧树脂基体的特种树脂溶液,有一系列不同的分子量和独特的分子量分布。黏度低,易于浸润碳纤维,有特别优异的粘接性。同时对芳伦纤维,高硅氧纤维等玻璃纤维同样有优良的粘接性能,其复合材料耐温可达350℃左右,甚至更高。同时不燃,无烟,有优异的烧蚀性能和透波性能。碳纤维复合材料火箭发动机壳体用耐烧蚀耐高温洁净阻燃韧性环氧树脂基体及其预浸料可存放3~6个月。预浸料适用于模压、层压、热压罐多种工艺,也可缠绕,已成功用于航天产品的碳/碳材料的制造,火箭发动机的喷管、扩散段、天线罩、飞机部件的制造。汽车工业的新型碳纤维离合器,其使用寿命可达30万次,比发达国家高一倍,其模压复合材料力学性能见表5。所制造的碳纤维刹车片各种指标达到或超过德国标准。其玻璃纤维模压复合材料在不同频率下的介电性能和不同温度的机械性能见表6。近年来,针对环氧树脂基体韧性不足、耐湿热性较差的问题,国内相关单位开展了多方面的改性研究,使复合材料冲击后的压缩强度达到了250MPa以上,复合材料饱和吸湿后120℃下的综合性能的保持率均与国外同类树脂体系相当。其多墙式复合材料层压板共固化、共胶接结构,全高度蜂窝夹层结构已在马赫数1.5以下的飞机上得到了工程化应用,并且有的复合材料结构经过了近20年的使用考核,质量情况仍然良好。疲劳试验的结果表明,在给定的设计载荷下,复合材料结构件30年的飞行寿命是可靠的。使用经验表明,这类复合材料是一种性能优异的材料,它已逐渐开始走向成熟。环氧树脂体系对碳纤维品种适应性研究在国内也取得了成果,特别是国产碳纤维增强的环氧树脂基复合材料已通过了一系列性能考核。以NY9200环氧树脂体系为例,与纤维界面有关的复合材料0°压缩和面内剪切性能与国外同类纤维增强的环氧树脂基复合材料相当,界面破坏形貌基本相似,并开始进入飞机结构上的应用。2.3树脂基复合材料在“九五”国家科技攻关项目“碳纤维复合材料火箭发动机壳体用高性能树脂基体的研究”项目支持下,针对“KN-1”型固体航天器和武器型号发展急需,针对碳纤维先进复合材料应用很广的芳香胺类固化的环氧树脂体系,设计合成了一种中间含有“柔性可旋转”链段的低黏度的二官能环氧基化合物,通过配方设计筛选,结合热、力学性能测试,开发了一种集韧性、耐热性及工艺都很好的环氧树脂基体。韧性环氧树脂基体配方在室温下黏度低,贮存适用期长,浇铸体热变形温度较高,断裂延伸率高达5.3%,其湿法缠绕成型的T-700碳复合材料具有界面粘接好,纤维强度转化率高达89.4%。<150mm压力容器水压爆破试验结果表明,该树脂基体工艺性能优良,压力容器特性系数pvw值高达40.1km。该种纤维复合材料发动机壳体(压力容器)主要性能指标达到了以美国国家宇航局NASA为代表的国际先进水平。可以用该改性树脂基体制造高性能碳复合材料发动机壳体。98-28A-01-17鉴定专家一致认为该改性树脂基体的研制成功,为我国航天航空用先进复合材料的发展起到了开拓性的作用。2.4和载荷机翼中国第4代飞机J-14开始全比例模型风洞实验,见图1。中国第4代重型歼击机歼14“鹰隼”是一种全新的高性能、多用途、全天候的空中优势的战斗机。中国第5代飞机J-15、J-20和舰载战斗机正在研制,见图2和图3。歼14“鹰隼”是单座双发、双V、总体布局形垂尾翼、菱形进气道的纵向一体化三翼面的气动布局。主要技术采用前掠式机翼,翼身融合的隐身设计,武器装载在机身的武器舱和推力矢量控制技术。机体的36%由碳纤维复合材料制成,钛64约占24%,钛62222占3%,钢占16%,铝合金占16%,热塑性复合材料大于1%,其他材料(包括涂漆、座藏盖、机头雷达整流罩、轮胎、刹车片、密封材料、黏合剂、气体、润滑油和冷却剂等)占15%。传统的钢和铝合金占的比重很小,而大量使用了钛合金和复合材料。2.5结构复合材料的发展材料与工艺是导弹研制、生产的基础,对提高导弹武器的性能、降低其成本起着重要作用,当前的研究重点是高性能合金、复合材料、隐身材料及特殊结构和功能材料。其中,复合材料及其制造工艺特别重要。用高性能纤维及其编织物、采用增强基体,可以批量生产强度大、比重小的高级复合材料,而且应用部位已由次承力部件发展到主承力部件。战略导弹的固体发动机、仪器舱、弹头防热与突防结构、机动发射筒、各类战术导弹的防热结构等,都是典型的复合材料构件。国内的巡航导弹结构复合材料发展水平与国外差距较大,但针对巡航导弹弹体结构特点近期发展了一系列树脂基复合材料新技术、新结构,牵引出以下3种树脂基结构复合材料新技术的发展:低成本整体成型复合材料、耐高温多结构特性复合材料、耐高温透波/结构复合材料。以上3种复合材料结构及技术具备显著的不同于航空结构的特点,集中了巡航导弹弹体结构的主要典型特征。(1)先进的成型技术在新一代亚声速巡航导弹的研究中,大胆采用了多种以整体成型为核心的先进复合材料成型技术,包括RTM共固化技术、RTM整体成型技术、整体模压技术等。巡航导弹复合材料舱段、复合材料整体弹翼、复合材料进气道油箱舱体一体化结构3种典型复合材料结构已成为主要发展方向。(2)结论双马-酚醛一体化复合材料从该技术本身而言,国内无论是传统的热压罐、模压技术,还是新开展的RTM技术,相应的BMI树脂和成型工艺均很成熟,具备了工程应用的条件。在高马赫数飞行的巡航导弹弹体结构上,双马树脂基复合材料可以通过与外层热防护层相结合的方式组成耐高温多结构特性复合材料。其中的典型代表是双马-酚醛一体化复合材料,它在未来弹道-巡航组合式导弹结构上将发挥独特的作用。这种弹道-巡航组合式导弹的飞行状态包含了“再入”和“巡航”,打破了传统意义上战略和战术导弹的界限,要求弹体结构材料需要同时具备承载和耐热双重作用,双马-酚醛一体化复合材料中内层的双马复合材料作为结构部分,外层的酚醛复合材料作为烧蚀型热防护材料,整个结构一次RTM成型、共固化,避免了二者界面结合问题,是一种耐高温多结构特性复合材料,能充分实现结构耐热与承载的高效统一。是未来巡航导弹弹体结构的一个很有前景的研究方向。(3)新一代竞争点天线罩兼具透波和结构的双重功效,是重要的巡航导弹弹体结构部分。亚声速巡航导弹的天线罩已发展较为成熟,以环氧树脂为主。新的技术竞争点集中在以超声速巡航导弹为代表的高性能耐热、宽频透波天线罩。中国的巡航导弹采用环氧树脂、双马-酚醛一体化基体碳纤维复合材料制作巡航导弹的弹头、巡航导弹复合材料弹翼、舱段、进气道油箱舱体一体化结构、天线罩、头舱、前设备舱、后设备舱、尾舱等。3ny98环氧树脂基复合材料在飞机上的使用在近400飞机上的应用在一般有机碳中国研发的碳纤维织物增强5224环氧树脂基复合材料结构已经在直升机上得到了大量的使用,单向碳纤维增强的NY9200环氧树脂基复合材料结构在近400架飞机上应用,另外,在飞机结构上开始采用的BA9916和5228环氧树脂基体系,这些应用所沉淀的工程经验均可以为国内大型飞机复合材料结构选材提供有益的参考和借鉴。3.1cd大客机产品特点C919和空客A320、波音737外形相似,与C919竞争的机型是占据中国航空市场半壁江山的波音737和空客A320,然而,如果要论承载旅客的数量和载重的真正之“大”,波音787飞机和空客A350才是与C919持续竞争的两款双通道飞机机型。而由中航承担中国民用航空大飞机80t级的C919飞机零部件也在加紧生产中,将如期交付中国商飞集团。C919与空客A320、波音737最大的区别在机头,传统的机头是由正面两块以及侧面4块挡风玻璃组成,而C919少了侧面两块挡风玻璃,国产大飞机的机头更具流线型,能减少阻力,同时驾驶员在驾驶舱的视野也比传统的机头更加宽阔。从这一点就可看出,国产大客机将更强调省油和经济性。C919的确拥有很多优势。C919从机头、机翼到机尾、发动机,在设计上都费尽心思,尽量减小阻力,有效降低油耗。在使用材料上,C9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论