版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市盐城中学2023年普通高中招生选考科目考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若不等式对任意的恒成立,则实数k的取值范围是()A. B. C. D.2.已知集合.为自然数集,则下列表示不正确的是()A. B. C. D.3.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么()A.国防大学,研究生 B.国防大学,博士C.军事科学院,学士 D.国防科技大学,研究生4.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元5.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户6.已知,则不等式的解集是()A. B. C. D.7.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.8.已知复数z满足i•z=2+i,则z的共轭复数是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i9.已知集合A,则集合()A. B. C. D.10.已知向量,,,若,则()A. B. C. D.11.已知实数满足约束条件,则的最小值是A. B. C.1 D.412.若复数满足,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________.14.甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“√”表示猜测某人获奖,“×”表示猜测某人未获奖,而“○”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_______.甲获奖乙获奖丙获奖丁获奖甲的猜测√××√乙的猜测×○○√丙的猜测×√×√丁的猜测○○√×15.的展开式中,项的系数是__________.16.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左,右焦点分别为,,,M是椭圆E上的一个动点,且的面积的最大值为.(1)求椭圆E的标准方程,(2)若,,四边形ABCD内接于椭圆E,,记直线AD,BC的斜率分别为,,求证:为定值.18.(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求实数的值.19.(12分)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长为且面积为的菱形.(1)求椭圆的方程;(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.20.(12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.02421.(12分)如图,在正三棱柱中,,,分别为,的中点.(1)求证:平面;(2)求平面与平面所成二面角锐角的余弦值.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)求直线的直角坐标方程与曲线的普通方程;(Ⅱ)已知点设直线与曲线相交于两点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详解】当时,,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.2、D【解析】
集合.为自然数集,由此能求出结果.【详解】解:集合.为自然数集,在A中,,正确;在B中,,正确;在C中,,正确;在D中,不是的子集,故D错误.故选:D.【点睛】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.3、C【解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.【详解】由题意①甲不是军事科学院的,③乙不是军事科学院的;则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士;由⑤国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.4、A【解析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.5、D【解析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.6、A【解析】
构造函数,通过分析的单调性和对称性,求得不等式的解集.【详解】构造函数,是单调递增函数,且向左移动一个单位得到,的定义域为,且,所以为奇函数,图像关于原点对称,所以图像关于对称.不等式等价于,等价于,注意到,结合图像关于对称和单调递增可知.所以不等式的解集是.故选:A【点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.7、D【解析】
列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.8、D【解析】
两边同乘-i,化简即可得出答案.【详解】i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为9、A【解析】
化简集合,,按交集定义,即可求解.【详解】集合,,则.故选:A.【点睛】本题考查集合间的运算,属于基础题.10、A【解析】
根据向量坐标运算求得,由平行关系构造方程可求得结果.【详解】,,解得:故选:【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.11、B【解析】
作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B.12、C【解析】
化简得到,,再计算复数模得到答案.【详解】,故,故,.故选:.【点睛】本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意容积,求导研究单调性,分析即得解.【详解】由题意:容积,,则,由得或(舍去),令则为V在定义域内唯一的极大值点也是最大值点,此时.故答案为:【点睛】本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.14、乙、丁【解析】
本题首先可根据题意中的“四个人中有且只有两个人的猜测是正确的”将题目分为四种情况,然后对四种情况依次进行分析,观察四人所猜测的结果是否冲突,最后即可得出结果.【详解】从表中可知,若甲猜测正确,则乙,丙,丁猜测错误,与题意不符,故甲猜测错误;若乙猜测正确,则依题意丙猜测无法确定正误,丁猜测错误;若丙猜测正确,则丁猜测错误;综上只有乙,丙猜测不矛盾,依题意乙,丙猜测是正确的,从而得出乙,丁获奖.所以本题答案为乙、丁.【点睛】本题是一个简单的合情推理题,能否根据“四个人中有且只有两个人的猜测是正确的”将题目所给条件分为四种情况并通过推理判断出每一种情况的正误是解决本题的关键,考查推理能力,是简单题.15、240【解析】
利用二项式展开式的通项公式,令x的指数等于3,计算展开式中含有项的系数即可.【详解】由题意得:,只需,可得,代回原式可得,故答案:240.【点睛】本题主要考查二项式展开式的通项公式及简单应用,相对不难.16、【解析】
把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:【点睛】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】
(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下顶点时,的面积取得最大值,求出,即可得答案;(2)根据题意可知,,因为,所以可设直线CD的方程为,将直线代入曲线的方程,利用韦达定理得到的关系,再代入斜率公式可证得为定值.【详解】(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下顶点时,的面积取得最大值.所以,所以,,故椭圆E的标准方程为.(2)根据题意可知,,因为,所以可设直线CD的方程为.由,消去y可得,所以,即.直线AD的斜率,直线BC的斜率,所以,故为定值.【点睛】本题考查椭圆标准方程的求解、椭圆中的定值问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的运用.18、(1),;(2).【解析】
(1)将代入求解,由(为参数)消去即可.(2)将(为参数)与联立得,设,两点对应的参数为,,则,,再根据,即,利用韦达定理求解.【详解】(1)把代入,得,由(为参数),消去得,∴曲线的直角坐标方程和直线的普通方程分别是,.(2)将(为参数)代入得,设,两点对应的参数为,,则,,由得,所以,即,所以,而,解得.【点睛】本题主要考查参数方程、极坐标方程、直角坐标方程的转化和直线参数方程的应用,还考查了运算求解的能力,属于中档题.19、(1)(2)【解析】
(1)由已知条件列出关于和的方程,并计算出和的值,jike得到椭圆的方程.(2)设出点和点坐标,运用点坐标计算出,分类讨论直线的斜率存在和不存在两种情况,求解出的最小值.【详解】(1)由己知得:,解得,所以,椭圆的方程(2)设,.当直线垂直于轴时,,且此时,,当直线不垂直于轴时,设直线由,得.,.要使恒成立,只需,即最小值为【点睛】本题考查了求解椭圆方程以及直线与椭圆的位置关系,求解过程中需要分类讨论直线的斜率存在和不存在两种情况,并运用根与系数的关系转化为只含一个变量的表达式进行求解,需要掌握解题方法,并且有一定的计算量.20、(1)见解析;(2)在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”(3)见解析.【解析】
(1)由已知抽取的人中优秀人数为20,这样结合已知可得列联表;(2)根据列联表计算,比较后可得;(3)由于性别对结果有影响,因此用分层抽样法.【详解】解:(1)优秀合格总计男生62228女生141832合计204060(2)由于,因此在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”.(3)由(2)可知性别有可能对是否优秀有影响,所以采用分层抽样按男女生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣东学院《微生物与发酵工程》2023-2024学年第一学期期末试卷
- 2022年上海审计师(初级)《审计理论与实务》考试题库(含典型题)
- 《心电图的临床应用》课件
- 三年级科学上册13风教案冀教版
- 2021年消防工程师综合能力模拟题及答案
- 《森林环境微生物》课件
- 《信息系统运作》课件
- 2021年试验检测师(含助理)-道路工程-集料试题
- 2021年度证券从业资格证券发行与承销预热阶段综合测试题(含答案)
- 国家安全线上教育课件
- 3.2《遵守规则》-教学设计2024-2025学年统编版道德与法治八年级上册
- 拆除高空广告牌的施工方案
- 天津市部分区2024-2025学年九年级上学期11月期中数学试题
- 全国职业院校技能大赛中职(大数据应用与服务赛项)考试题及答案
- 学校食堂从业人员培训制度
- 审计基础知识培训
- DB43 873-2014 箱式暖脚器标准
- 【学易金卷】2023-2024学年四年级数学上册期末全真模拟提高卷(三)(答题卡)(北师大版)
- 部编 2024版历史七年级上册期末(全册)复习卷(后附答案及解析)
- 2024年煤矿安全管理人员(机电运输)考试题库(浓缩500题)
- 山东省济南市历城区历城第二中学2025届高一数学第一学期期末监测模拟试题含解析
评论
0/150
提交评论