河南中原名校2023年高二上数学期末学业水平测试模拟试题含解析_第1页
河南中原名校2023年高二上数学期末学业水平测试模拟试题含解析_第2页
河南中原名校2023年高二上数学期末学业水平测试模拟试题含解析_第3页
河南中原名校2023年高二上数学期末学业水平测试模拟试题含解析_第4页
河南中原名校2023年高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南中原名校2023年高二上数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在矩形中,,在该矩形内任取一点M,则事件“”发生的概率为()A. B.C. D.2.数列中,满足,,设,则()A. B.C. D.3.数列满足,,则()A. B.C. D.24.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.5.设双曲线的离心率为,则下列命题中是真命题的为()A.越大,双曲线开口越小 B.越小,双曲线开口越大C.越大,双曲线开口越大 D.越小,双曲线开口越大6.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.37.圆的圆心和半径分别是()A. B.C. D.8.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好第三次就停止的概率为()A. B.C. D.9.设实数x,y满足约束条件则的最小值()A.5 B.C. D.810.数列,,,,,中,有序实数对是()A. B.C. D.11.已知函数为偶函数,且当时,,则不等式的解集为()A. B.C. D.12.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数二、填空题:本题共4小题,每小题5分,共20分。13.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块.已知每层圈数相同,共有9圈,则下层比上层多______块石板14.数列满足,则_______________.15.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为,则的值为________16.在锐角中,角A,B,C的对边分别为a,b,c.若,,,则的面积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知两点(1)求以线段为直径的圆C的方程;(2)在(1)中,求过M点的圆C的切线方程18.(12分)设椭圆过,两点,为坐标原点(1)求椭圆的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,,且?若存在,写出该圆的方程,并求的取值范围;若不存在,说明理由19.(12分)已知椭圆的右焦点是椭圆上的一动点,且的最小值是1,当垂直长轴时,.(1)求椭圆的标准方程;(2)设直线与椭圆相切,且交圆于两点,求面积的最大值,并求此时直线方程.20.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求;(2)若,求的面积的最大值21.(12分)已知直线经过点,且满足下列条件,求相应的方程.(1)过点;(2)与直线垂直.22.(10分)已知函数.(1)求的单调区间;(2)讨论的零点个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用几何概型的概率公式,转化为面积比直接求解.【详解】以AB为直径作圆,当点M在圆外时,.所以事件“”发生的概率为.故选:D2、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力3、C【解析】根据已知分析数列周期性,可得答案【详解】解:∵数列满足,,∴,,,,故数列以4为周期呈现周期性变化,由,故,故选C【点睛】本题考查的知识点是数列的递推公式,数列的周期性,难度中档4、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.5、C【解析】根据双曲线的性质结合离心率对双曲线开口大小的影响即可得解.【详解】解:对于A,越大,双曲线开口越大,故A错误;对于B,越小,双曲线开口越小,故B错误;对于C,由,越大,则越大,双曲线开口越大,故C正确;对于D,越小,则越小,双曲线开口越小,故D错误.故选:C.6、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A7、B【解析】将圆的方程化成标准方程,即可求解.【详解】解:.故选:B.8、A【解析】利用古典概型的概率公式求解.【详解】因为随机模拟产生了以下18组随机数:,其中恰好第三次就停止包含的基本事件有:023,123,132共3个,所以由此可以估计,恰好第三次就停止的概率为,故选:A9、B【解析】做出,满足约束条件的可行域,结合图形可得答案.【详解】做出,满足约束条件可行域如图,化为,平移直线,当直线经过点时有最小值,由得,所以的最小值为.故选:B.10、A【解析】根据数列的概念,找到其中的规律即可求解.【详解】由数列,,,,,可知,,,,,则,解得,故有序实数对是,故选:11、D【解析】结合导数以及函数的奇偶性判断出的单调性,由此化简不等式来求得不等式的解集.【详解】当时,单调递增,,所以单调递增.因为是偶函数,所以当时,单调递减.,,,或.即不等式的解集为.故选:D12、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、1458【解析】首先由条件可得第圈的石板为,且为等差数列,利用基本量求和,即可求解.【详解】设第圈的石板为,由条件可知数列是等差数列,且上层的第一圈为,且,所以,上层的石板数为,下层的石板数为.所以下层比上层多块石板.故答案为:145814、【解析】利用来求得,进而求得正确答案.【详解】,,是数列是首项为,公差为的等差数列,所以,所以.故答案为:15、±1【解析】由题意得=≠,∴a=-4且c≠-2,则6x+ay+c=0可化为3x-2y+=0,由两平行线间的距离公式,得=,解得c=2或c=-6,∴=±116、【解析】根据求出,由向量数量积得到,使用余弦定理得到方程组,求出,利用面积公式求出结果.【详解】因为,所以,即,而因为是锐角三角形,所以,所以,所以,因为,所以,即,因为,所以,整理得:①,其中,即,因为,所以,即,解得:②,把②代入①得:,解得:,则的面积为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出圆心和半径即可得到答案;(2)根据题意先求出切线的斜率,进而通过点斜式求出切线方程.【小问1详解】由题意,圆心,半径,则圆C的方程为:.【小问2详解】由题意,,则切线斜率为-1,所以切线方程为:.18、(1)(2)存在,,【解析】(1)根据椭圆E:()过,两点,直接代入方程解方程组,解方程组即可.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,当切线斜率存在时,设该圆的切线方程为,联立,根据,结合韦达定理运算,同时满足,则存在,否则不存在;在该圆的方程存在时,利用弦长公式结合韦达定理得到,结合题意求解即可,当切线斜率不存在时,验证即可.【小问1详解】将,的坐标代入椭圆的方程得,解得,所以椭圆的方程为【小问2详解】假设满足题意的圆存在,其方程为,其中,设该圆的任意一条切线和椭圆交于,两点,当直线的斜率存在时,令直线的方程为,①将其代入椭圆的方程并整理得,由韦达定理得,,②因为,所以,③将①代入③并整理得,联立②得,④因为直线和圆相切,因此,由④得,所以存在圆满足题意当切线的斜率不存在时,易得,由椭圆方程得,显然,综上所述,存在圆满足题意当切线的斜率存在时,由①②④得,由,得,即当切线的斜率不存在时,易得,所以综上所述,存在圆心在原点的圆满足题意,且19、(1);(2),.【解析】(1)由的最小值为1,得到,再由,结合,求得的值,即可求得椭圆的方程.(2)设切线的方程为,联立方程组,根据直线与椭圆相切,求得,结合点到直线的距离公式和圆的弦长公式,求得的面积的表示,结合函数的单调性,即可求解.【详解】(1)由题意,点椭圆上的一动点,且的最小值是1,得,因为当垂直长轴时,可得,所以,即,又由,解得,所以椭圆的标准方程为.(2)由题意知切线的斜率一定存在,否则不能形成,设切线的方程为,联立,整理得,因为直线与椭圆相切,所以,化简得,则,因为点到直线的距离,所以,即,故的面积为,因为,可得,即,函数在上单调递增,所以,当时取等号,则,即面积的最大值为.当时,此时,所以直线的方程为.【点睛】对于直线与椭圆的位置关系的处理方法:1、判定与应用直线与椭圆的位置关系,一把转化为研究直线方程与椭圆组成的方程组的解得个数,结合判别式求解;2、对于过定点的直线,也可以通过定点在椭圆的内部或在椭圆上,判定直线与椭圆的位置关系.20、(1)(2)【解析】(1)由正弦定理将边化为角,结合三角函数的两角和的正弦公式,可求得答案;(2)由余弦定理结合基本不等式可求得,再利用三角形面积公式求得答案.【小问1详解】由正弦定理及,得,∵∴,∵,∴【小问2详解】由余弦定理,∴,即,当且仅当时取等号,∴,当且仅当时等号成立,∴的面积的最大值为21、(1)(2)【解析】(1)直接利用两点式写出直线的方程;(2)先求出直线的斜率,由点斜式写出直线的方程.【小问1详解】直线经过,两点,由两点式得直线的方程为.【小问2详解】与直线垂直直线的斜率为由点斜式得直线的方程为.22、(1)单调递增区间是和,单调递减区间是(2)时,有1个零点;或时,有2个零点;时,有3个零点.【解析】(1)求解函数的导数,再运用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论