2024届江苏省明德实验学校数学高二上期末经典模拟试题含解析_第1页
2024届江苏省明德实验学校数学高二上期末经典模拟试题含解析_第2页
2024届江苏省明德实验学校数学高二上期末经典模拟试题含解析_第3页
2024届江苏省明德实验学校数学高二上期末经典模拟试题含解析_第4页
2024届江苏省明德实验学校数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省明德实验学校数学高二上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为数列的前n项和,且,则=()A.26 B.19C.11 D.92.如图,在平行六面体中,M为与的交点,若,,,则下列向量中与相等的向量是()A. B.C. D.3.下列语句中是命题的是A.周期函数的和是周期函数吗? B.C. D.梯形是不是平面图形呢?4.已知向量与向量垂直,则实数x的值为()A.﹣1 B.1C.﹣6 D.65.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数,他们根据沙粒和石子所排列的形状把数分成许多类,若:三角形数、、、、,正方形数、、、、等等.如图所示为正五边形数,将五边形数按从小到大的顺序排列成数列,则此数列的第4项为()A. B.C. D.6.已知空间向量,,若,则实数的值是()A. B.0C.1 D.27.过抛物线的焦点作直线l,交抛物线与A、B两点,若线段中点的纵坐标为3,则等于()A.10 B.8C.6 D.48.青花瓷是中华陶瓷烧制工艺的珍品,也是中国瓷器的主流品种之一.如图,是一青花瓷花瓶,其外形上下对称,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶的瓶口直径为瓶身最小直径的2倍,花瓶恰好能放入与其等高的正方体包装箱内,则双曲线的离心率为()A. B.C. D.9.如果在一实验中,测得的四组数值分别是,则y与x之间的回归直线方程是()A. B.C. D.10.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为A.2 B.3C.4 D.511.如果,那么下面一定成立的是()A. B.C. D.12.已知直线过点,且与直线垂直,则直线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的程序框图,则输出的S=__.14.若球的大圆的面积为,则该球的表面积为___________.15.1202年意大利数学家列昂那多-斐波那契以兔子繁殖为例,引人“兔子数列”,又称斐波那契数列.即该数列中的数字被人们称为神奇数,在现代物理,化学等领域都有着广泛的应用.若此数列各项被3除后的余数构成一新数列,则数列的前2022项的和为________.16.已知点P为椭圆上的任意一点,点,分别为该椭圆的左、右焦点,则的最大值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.18.(12分)已知椭圆的焦点与双曲线的焦点相同,且D的离心率为.(1)求C与D的方程;(2)若,直线与C交于A,B两点,且直线PA,PB的斜率都存在.①求m的取值范围.②试问这直线PA,PB的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.19.(12分)有时候一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同品牌的一些食品所含热量的百分比记为和一些美食家以百分制给出的对此种食品口味的评价分数记为:食品品牌12345678910所含热量的百分比25342019262019241914百分制口味评价分数88898078757165626052参考数据:,,,参考公式:,(1)已知这些品牌食品的所含热量的百分比与美食家以百分制给出的对此种食品口味的评价分数具有相关关系.试求出回归方程(最后结果精确到);(2)某人只能接受食品所含热量百分比为及以下的食品.现在他想从这些食品中随机选取两种购买,求他所选取的两种食品至少有一种是美食家以百分制给出的对此种食品口味的评价分数为分以上的概率.20.(12分)求下列不等式的解集:(1);(2).21.(12分)如图,在棱长为3的正方体中,分别是上的点且(1)求证:;(2)求平面与平面的夹角的余弦值22.(10分)已知椭圆()的离心率为,一个焦点为.(1)求椭圆的方程;(2)设为原点,直线()与椭圆交于不同的两点,且与x轴交于点,为线段的中点,点关于轴的对称点为.证明:是等腰直角三角形.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求得,然后求得.【详解】依题意,当时,,当时,,,所以,所以.故选:D2、A【解析】利用空间向量的三角形法则可得,结合平行六面体的性质分析解答【详解】平行六面体中,M为与的交点,,,,则有:,所以.故选:A3、B【解析】命题是能判断真假的语句,疑问句不是命题,易知为命题,故选B4、B【解析】根据数量积的坐标计算公式代入可得的值【详解】解:向量,与向量垂直,则,由数量积的坐标公式可得:,解得,故选:【点睛】本题考查空间向量的坐标运算,以及数量积的坐标公式,属于基础题5、D【解析】根据前三个五边形数可推断出第四个五边形数.【详解】第一个五边形数为,第二个五边形数为,第三个五边形数为,故第四个五边形数为.故选:D.6、C【解析】根据空间向量垂直的性质进行求解即可.【详解】因为,所以,因此有.故选:C7、B【解析】根据抛物线的定义求解【详解】抛物线的焦点为,准线方程为,设,则,所以,故选:B8、C【解析】由题意作出轴截面,最短直径为2a,根据已知条件点(2a,2a)在双曲线上,代入双曲线的标准方程,结合a,b,c的关系可求得离心率e的值【详解】由题意作出轴截面如图:M点是双曲线与截面正方形的交点之一,设双曲线的方程为:最短瓶口直径为A1A2=2a,则由已知可得M是双曲线上的点,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化简后得,解得故选:C9、B【解析】根据已知数据求样本中心点,由样本中心点在回归直线上,将其代入各选项的回归方程验证即可.【详解】由题设,,因为回归直线方程过样本点中心,A:,排除;B:,满足;C:,排除;D:,排除.故选:B10、D【解析】抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.11、C【解析】根据不等式的基本性质,以及特例法和作差比较法,逐项计算,即可求解.【详解】对于A中,当时,,所以不正确;对于B中,因为,根据不等式的性质,可得,对于C中,由,可得可得,所以,所以正确;对于D中,由,可得,则,所以,所以不正确.故选:C.12、A【解析】求出直线斜率,利用点斜式可得出直线的方程.【详解】直线的斜率为,则直线的斜率为,故直线的方程为,即.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,即可求解得答案【详解】解:S=S+=S+,第一次循环,S=1+1﹣,k=2;第二次循环,S=1+1﹣,k=3;第三次循环,S=1+1,k=4;第四次循环,S=1,k=5;第五次循环,S=1+1,k=6,循环停止,输出;故答案为:.14、【解析】设球的半径为,则球的大圆的半径为,根据圆的面积公式列方程求出,再由球的表面积公式即可求解.【详解】设球的半径为,则球的大圆的半径为,所以球的大圆的面积为,可得,所以该球的表面积为.故答案为:.15、【解析】由数列各项除以3的余数,可得为,知是周期为8的数列,即可求出数列的前2022项的和.【详解】由数列各项除以3的余数,可得为,是周期为8的数列,一个周期中八项和为,又,数列的前2022项的和.故答案为:.16、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【详解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大时,由椭圆的性质知当P为椭圆上顶点时最大,此时,,所以,所以的最大值是1,,所以,故答案为:.【点睛】本题考查椭圆焦点三角形的问题,考查正弦定理的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),a的取值范围为.【解析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.【详解】(1)连结,由等边三角形可知:在中,,,,于是,故椭圆C的离心率为;(2)由题意可知,满足条件的点存在,当且仅当,,,即①②③由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点.故,a的取值范围为.【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.18、(1)C:;D:;(2)①且;②见解析.【解析】(1)根据D的离心率为,求出从而求出双曲线的焦点,再由椭圆的焦点与双曲线的焦点相同,即可求出,即可求出C与D的方程;(2)①根据题意容易得出,然后联立方程,消元,利用即可求出m的取值范围;②设,由①得:,计算出,判断其是否为定值即可.【详解】解:(1)因为D的离心率为,即,解得:,所以D的方程为:;焦点坐标为,又因椭圆的焦点与双曲线的焦点相同,所以,所以,所以C的方程为:;(2)①如图:因为直线与C交于A,B两点,且直线PA,PB的斜率都存在,所以,联立,消化简得:,所以,解得,所以且;②设,由①得:,,所以,故直线PA,PB的斜率之积不是是定值.【点睛】本题考查了求椭圆与双曲线的方程、直线与椭圆的位置关系及椭圆中跟定直有关的问题,难度较大.19、(1)(2)【解析】(1)首先求出、、,即可求出,从而求出回归直线方程;(2)由表可知某人只能接受的食品共有种,评价为分以上的有种可记为,,另外种记为,,,,用列举法列出所有的可能结果,再根据古典概型的概率公式计算可得;【小问1详解】解:设所求的回归方程为,由,,,,所求的回归方程为:.【小问2详解】解:由表可知某人只能接受的食品共有种,其中美食家以百分制给出的对此种食品口味的评价为分以上的有种可记为,,另外种记为,,,.任选两种分别为:,,,,,,,,,,,,,,,共15个基本事件.记“所选取的两种食品至少有一种是美食家以百分制给出的对此食品口味的评价分数为分以上”为事件,则事件包含,,,,,,,,共个基本事件,故事件发生的概率为.20、(1)(2)【解析】(1)根据一元二次不等式的解法求得不等式的解集.(2)根据分式不等式的解法求得不等式的解集.【小问1详解】不等式等价于,解得.∴不等式的解集为.【小问2详解】不等式等价于,解得或.∴不等式的解集为.21、(1)证明见解析(2)【解析】(1)建立空间直角坐标系后得到相关向量,再运用数量积证明;(2)求出相关平面的法向量,再运用夹角公式计算即可.【小问1详解】建立如下图所示的空间直角坐标系:,,,,,∴,故.【小问2详解】,,,设平面的一个法向量为,由,令,则,取平面的一个法向量为,设平面与平面夹角为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论