2024届广西钦州市钦南区钦州港中学高二上数学期末教学质量检测试题含解析_第1页
2024届广西钦州市钦南区钦州港中学高二上数学期末教学质量检测试题含解析_第2页
2024届广西钦州市钦南区钦州港中学高二上数学期末教学质量检测试题含解析_第3页
2024届广西钦州市钦南区钦州港中学高二上数学期末教学质量检测试题含解析_第4页
2024届广西钦州市钦南区钦州港中学高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西钦州市钦南区钦州港中学高二上数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四面体中,,,,且,,则等于()A. B.C. D.2.直线的倾斜角为()A.30° B.60°C.90° D.120°3.设双曲线:的左、右焦点分别为、,P为C上一点,且,,则双曲线的渐近线方程为()A. B.C. D.4.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知x>0、y>0,且1,若恒成立,则实数m的取值范围为()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)6.如图,在平行六面体中,M为与的交点,若,,,则下列向量中与相等的向量是()A. B.C. D.7.已知点,在双曲线上,线段的中点,则()A. B.C. D.8.已知函数,为的导数,则()A.-1 B.1C. D.9.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.211.2021年7月,某文学网站对该网站的数字媒体内容能否满足读者需要进行了调查,调查部门随机抽取了名读者,所得情况统计如下表所示:满意程度学生族上班族退休族满意一般不满意记满分为分,一般为分,不满意为分.设命题:按分层抽样方式从不满意的读者中抽取人,则退休族应抽取人;命题:样本中上班族对数字媒体内容满意程度的方差为.则下列命题中为真命题的是()A. B.C. D.12.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等差数列中,若,,则______,数列的前n项和为,则______14.在等比数列中,已知,则__________15.抛物线的准线方程为_______.16.在正三棱柱中,,点P满足,其中,,则下列说法中,正确的有_________(请填入所有正确说法的序号)①当时,的周长为定值②当时,三棱锥的体积为定值③当时,有且仅有一个点P,使得④当时,有且仅有一个点P,使得平面三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点、作底面圆的切线,两切线相交于点,点是切线与圆的切点(1)证明:平面;(2)若平面与平面所成锐二面角的余弦值为,求该圆锥的体积18.(12分)如图,在三棱锥中,底面,.点,,分别为棱,,的中点,是线段的中点,,(1)求证:平面;(2)求二面角的正弦值;(3)已知点在棱上,且直线与直线所成角的余弦值为,求线段的长19.(12分)设命题方程表示中心在原点,焦点在坐标轴上的双曲线;命题,,若“”为假命题,“”为真命题,求实数的取值范围.20.(12分)2021年2月12日,辛丑牛年大年初一,由贾玲导演的电影《你好,李焕英》上映,截至到2月21日22点8分,票房攀升至40.25亿,反超同期上映的《唐人街探案3》,迎来了2021春节档最具戏剧性的一幕.正是因为影片中母女间的这份简单、纯粹、诚挚的情感触碰了人们内心柔软的地方,打动了万千观众,才赢得了良好的口碑,不少观众都流下了感动的泪水.影片结束后,某电影院工作人员当日随机抽查了100名观看《你好,焕英》的观众,询问他们在观看影片的过程中是否“流泪”,得到以下表格:男性观众女性观众合计流泪20没有流泪520合计(1)完成表格中的数据,并判断是否有99.9%的把握认为观众在观看影片的过程中流泪与性别有关?(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,然后从这5人中再随机抽取2人,求这2人都流泪的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,21.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,PD⊥底面ABCD,点F为棱PD的中点,二面角的余弦值为.(1)求PD的长;(2)求异面直线BF与PA所成角的余弦值;(3)求直线AF与平面BCF所成角的正弦值.22.(10分)自疫情爆发以来,由于党和国家对抗疫工作高度重视,在人民群众的不懈努力下,我国抗疫工作取得阶段性成功,国家经济很快得到复苏.在餐饮业恢复营业后,某快餐店统计了近天内每日接待的顾客人数,将前天的数据进行整理得到频率分布表和频率分布直方图.组别分组频数频率第组第组第组第组第组合计(1)求、、的值,并估计该快餐店在前天内每日接待的顾客人数的平均数;(2)已知该快餐店在前50天内每日接待的顾客人数的方差为,在后天内每日接待的顾客人数的平均数为、方差为,估计这家快餐店这天内每日接待的顾客人数的平均数和方差.()

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量的线性运算即可求解.【详解】解:由题知,故选:B.2、B【解析】根据给定方程求出直线斜率,再利用斜率的定义列式计算得解.【详解】直线的斜率,设其倾斜角为,显然,则有,解得,直线的倾斜角为.故选:B3、B【解析】根据双曲线定义结合,求得,在中,利用余弦定理求得之间的关系,即可得出答案.【详解】解:因为在双曲线中,因为,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以双曲线的渐近线方程为.故选:B.4、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.5、B【解析】应用基本不等式“1”的代换求的最小值,注意等号成立条件,再根据题设不等式恒成立有,解一元二次不等式求解集即可.【详解】由题设,,当且仅当时等号成立,∴要使恒成立,只需,故,∴.故选:B.6、A【解析】利用空间向量的三角形法则可得,结合平行六面体的性质分析解答【详解】平行六面体中,M为与的交点,,,,则有:,所以.故选:A7、D【解析】先根据中点弦定理求出直线的斜率,然后求出直线的方程,联立后利用弦长公式求解的长.【详解】设,,则可得方程组:,两式相减得:,即,其中因为的中点为,故,故,即直线的斜率为,故直线的方程为:,联立,解得:,由韦达定理得:,,则故选:D8、B【解析】由导数的乘法法则救是导函数后可得结论【详解】解:由题意,,所以.故选:B9、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B10、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.11、A【解析】由抽样比再乘以可得退休族应抽取人数可判断命题,求出上班族对数字媒体内容满意程度的平均分,由方差公式计算方差可判断,再由复合命题的真假判断四个选项,即可得正确选项.【详解】因为退休族应抽取人,所以命题正确;样本中上班族对数字媒体内容满意程度的平均分为,方差为,命题正确,所以为真,、、为假命题,故选:12、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】设等差数列公差为d,根据等差数列的性质即可求通项公式;,采用裂项相消的方法求.【详解】设等差数列公差为d,,,;∵,∴.故答案为:;.14、32【解析】根据已知求出公比即可求出答案.【详解】设等比数列的公比为,则,则,所以.故答案为:32.15、【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,故答案为16、②④【解析】①结合得到P在线段上,结合图形可知不同位置下周长不同;②由线面平行得到点到平面距离不变,故体积为定值;③结合图形得到不同位置下有,判断出③错误;④结合图形得到有唯一的点P,使得线面垂直.【详解】由题意得:,,,所以P为正方形内一点,①,当时,,即,,所以P在线段上,所以周长为,如图1所示,当点P在处时,,故①错误;②,如图2,当时,即,即,,所以P在上,,因为∥BC,平面,平面,所以点P到平面距离不变,即h不变,故②正确;③,当时,即,如图3,M为中点,N为BC的中点,P是MN上一动点,易知当时,点P与点N重合时,由于△ABC为等边三角形,N为BC中点,所以AN⊥BC,又⊥BC,,所以BN⊥平面,因为平面,则,当时,点P与点M重合时,可证明出⊥平面,而平面,则,即,故③错误;④,当时,即,如图4所示,D为的中点,E为的中点,则P为DE上一动点,易知,若平面,只需即可,取的中点F,连接,又因为平面,所以,若,只需平面,即即可,如图5,易知当且仅当点P与点E重合时,故只有一个点P符合要求,使得平面,故④正确.故选:②④【点睛】立体几何的压轴题,通常情况下要画出图形,利用线面平行,线面垂直及特殊点,特殊值进行排除选项,或者用等体积法进行转化等思路进行解决.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由线面垂直、切线的性质可得、,再根据线面垂直的判定即可证结论.(2)若,构建为原点,、、为x、y、z轴的空间直角坐标系,求面、面的法向量,利用空间向量夹角的坐标表示及其对应的余弦值求R,最后由圆锥的体积公式求体积.【小问1详解】由题设,底面圆,又是切线与圆的切点,∴底面圆,则,且,而,∴平面.【小问2详解】由题设,若,可构建为原点,、、为x、y、z轴的空间直角坐标系,又,可得,∴,,,有,,若是面的一个法向量,则,令,则,又面的一个法向量为,∴,可得,∴该圆锥的体积18、(1)证明见解析;(2);(3)或【解析】本小题主要考查直线与平面平行、二面角、异面直线所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.首先要建立空间直角坐标系,写出相关点的坐标,证明线面平行只需求出平面的法向量,计算直线对应的向量与法向量的数量积为0,求二面角只需求出两个半平面对应的法向量,借助法向量的夹角求二面角,利用向量的夹角公式,求出异面直线所成角的余弦值,利用已知条件,求出的值.试题解析:如图,以A为原点,分别以,,方向为x轴、y轴、z轴正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:=(0,2,0),=(2,0,).设,为平面BDE的法向量,则,即.不妨设,可得.又=(1,2,),可得.因为平面BDE,所以MN//平面BDE.(2)解:易知为平面CEM的一个法向量.设为平面EMN的法向量,则,因为,,所以.不妨设,可得.因此有,于是.所以,二面角C—EM—N的正弦值为.(3)解:依题意,设AH=h(),则H(0,0,h),进而可得,.由已知,得,整理得,解得,或.所以,线段AH的长为或.【考点】直线与平面平行、二面角、异面直线所成角【名师点睛】空间向量是解决空间几何问题的锐利武器,不论是求空间角、空间距离还是证明线面关系利用空间向量都很方便,利用向量夹角公式求异面直线所成的角又快又准,特别是借助平面的法向量求线面角,二面角或点到平面的距离都很容易.19、【解析】求出当命题、分别为真命题时实数的取值范围,分析可知、中一真一假,分真假、假真两种情况讨论,求出对应的实数的取值范围,综合可得结果.【详解】解:若为真命题,则,即,解得,若为真命题,则,解得,因为“”为假命题,“”为真命题,则、中一真一假,若真假,则,可得,若假真,则,此时.综上所述,实数的范围为.20、(1)填表见解析;有99.9%的把握认为观众在观看影片的过程中流泪与性别有关;(2)【解析】(1)由已知数据可完善列联表,然后计算可得结论;(2)根据分层抽样定义求出5人中流泪与没有流泪的观众人数并编号,用列举法写出作任取2人的所有基本事件,并得出2人都流泪的基本事件,计数后可计算概率【详解】解:(1)男性观众女性观众合计流泪206080没有流泪15520合计3565100所以有99.9%的把握认为观众在观看影片的过程中流泪与性别有关(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,则流泪的观众抽到人,记为,,,,没有流泪的观众抽到人,记为从这5人中抽2人有10种情况,分别是,,,,,,,,,其中这2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论