版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省大丰市南阳中学高二上数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,用3种不同的颜色涂入图中的矩形A,B,C中,要求相邻的矩形不能使用同一种颜色,则不同的涂法有()ABCA.3种 B.6种C.12种 D.27种2.学校开设甲类选修课3门,乙类选修课4门,从中任选3门,甲乙两类课程都有选择的不同选法种数为()A.24 B.30C.60 D.1203.定义在R上的偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.4.已知等差数列满足,则其前10项之和为()A.140 B.280C.68 D.565.两圆与的公切线有()A.1条 B.2条C.3条 D.4条6.椭圆的离心率为()A B.C. D.7.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人8.设正数数列的前项和为,数列的前项积为,且,则()A. B.C. D.9.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-710.已知双曲线的一条渐近线方程为,它的焦距为2,则双曲线的方程为()A B.C. D.11.数列中,,,.当时,则n等于()A.2016 B.2017C.2018 D.201912.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左、右焦点分别为,,O为坐标原点,点M是双曲线左支上的一点,若,,则双曲线的离心率是____________14.某校组织了一场演讲比赛,五位评委对某位参赛选手的评分分别为9,x,8,y,9.已知这组数据的平均数为8.6,方差为0.24,则______15.若平面内两定点A,B间的距离为2,动点P满足,则的最小值为_________.16.过圆内的点作一条直线,使它被该圆截得的线段最短,则直线的方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和18.(12分)如图1,在△MBC中,,A,D分别为棱BM,MC的中点,将△MAD沿AD折起到△PAD的位置,使,如图2,连结PB,PC,BD(1)求证:平面PAD⊥平面ABCD;(2)若E为PC中点,求直线DE与平面PBD所成角的正弦值19.(12分)已知双曲线的两个焦点为的曲线C上.(1)求双曲线C的方程;(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程20.(12分)在二项式展开式中,第3项和第4项的二项式系数比为.(1)求n的值及展开式中的常数项;(2)求展开式中系数最大的项是第几项.21.(12分)已知三棱柱中,面底面,,底面是边长为的等边三角形,,、分别在棱、上,且.(1)求证:底面;(2)在棱上找一点,使得和面所成角的余弦值为,并说明理由.22.(10分)已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据给定信息,按用色多少分成两类,再分类计算作答.【详解】计算不同的涂色方法数有两类办法:用3种颜色,每个矩形涂一种颜色,有种方法,用2色,矩形A,C涂同色,有种方法,由分类加法计数原理得(种),所以不同的涂法有12种.故选:C2、B【解析】利用组合数计算出正确答案.【详解】甲乙两类课程都有选择的不同选法种数为.故选:B3、B【解析】,再根据函数的奇偶性和单调性可得或,解之即可得解.【详解】解:,由题意可得或即或,解得或故选:B.4、A【解析】根据等差数列的性质,可得,结合等差数列的求和公式,即可求解.【详解】由题意,等差数列满足,根据等差数列的性质,可得,所以数列的前10项和为.故选:A.5、D【解析】求得圆心坐标分别为,半径分别为,根据圆圆的位置关系的判定方法,得出两圆的位置关系,即可求解.【详解】由题意,圆与圆,可得圆心坐标分别为,半径分别为,则,所以,可得圆外离,所以两圆共有4条切线.故选:D.6、D【解析】根据椭圆方程先写出标准方程,然后根据标准方程写出便可得到离心率.【详解】解:由题意得:,,故选:D7、B【解析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数列,解方程可得所求值【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且,,∴,,∴天则目前派出的人数为人,故选:B8、B【解析】当可求得;当时,可证得数列为等差数列,利用等差数列通项公式可推导得到,由求得后,利用可求得结果.【详解】当时,,解得:;当时,由得:,即,,数列是以为首项,为公差的等差数列,,解得:,,经检验:满足,,故选:B.9、A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A10、B【解析】根据双曲线的一条渐近线方程为,可得,再结合焦距为2和,求得,即可得解.【详解】解:因为双曲线的一条渐近线方程为,所以,即,又因焦距为2,即,即,因为,所以,所以,所以双曲线的方程为.故选:B.11、B【解析】根据已知条件用逐差法求得的通项公式,再根据裂项求和法求得,代值计算即可.【详解】因为,,则,即,则,故,又,即,解得.故选:B.12、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】根据得出,设,从而利用双曲线的定义可求出,的关系,从而可求出答案.【详解】设双曲线的焦距为,则,因为,所以,因为,不妨设,,由双曲线的定义可得,所以,,由勾股定理可得,,所以,所以双曲线的离心率故答案为:.14、1【解析】根据平均数和方差的计算公式,求得,则问题得解.【详解】由题可知:整理得:;,整理得:,联立方程组得,解得或,对应或,故.故答案为:1.15、【解析】建立直角坐标系,设出P的坐标,求出轨迹方程,然后推出的表达式,转化求解最小值即可.【详解】以经过A,B的直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系.则设,由,则,所以两边平方并整理得,所以P点的轨迹是以(3,0)为圆心,为半径的圆,所以,,则有,则的最小值为.故答案为:.16、【解析】由已知得圆的圆心为,所以当直线时,被该圆截得的线段最短,可求得直线的方程.【详解】解:由得,所以圆的圆心为,所以当直线时,被该圆截得的线段最短,所以,解得,所以直线l的方程为,即,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)利用等差数列通项公式,可构造方程组求得,由此可得通项公式;(2)由(1)可得,利用分组求和法,结合等差等比求和公式可得结果.【小问1详解】设等差数列的公差为,则,解得:或,当时,;当时,.综上,或【小问2详解】由(1)当数列为递增数列,则,设,.18、(1)证明见解析;(2).【解析】(1)推导出,,利用线面垂直的判定定理可得平面,再利用面面垂直的判定定理即可证明;(2)以A为坐标原点,建立如图空间直角坐标系,利用向量法即可求出直线DE与平面所成角的正弦值.【小问1详解】由题意知,因为点A、D分别为MB、MC中点,所以,又,所以,所以.因为,所以,又,所以平面,又平面,所以平面平面;【小问2详解】因为,,,所以两两垂直,以A为坐标原点,建立如图空间直角坐标系,,则,设平面的一个法向量为,则,令,得,所以,设直线DE与平面所成角为,则,所以直线DE与平面所成角的正弦值为.19、(1)双曲线方程为(2)满足条件的直线l有两条,其方程分别为y=和【解析】(1)由双曲线焦点可得值,进而可得到的关系式,将点P代入双曲线可得到的关系式,解方程组可求得值,从而确定双曲线方程;(2)求直线方程采用待定系数法,首先设出方程的点斜式,与双曲线联立,求得相交的弦长和O到直线的距离,代入面积公式可得到直线的斜率,求得直线方程试题解析:(1)由已知及点在双曲线上得解得;所以,双曲线的方程为(2)由题意直线的斜率存在,故设直线的方程为由得设直线与双曲线交于、,则、是上方程的两不等实根,且即且①这时,又即所以即又适合①式所以,直线的方程为与20、(1),常数项为(2)5【解析】(1)求出二项式的通项公式,求出第3项和第4项的二项式系数,再利用已知条件列方程求出的值,从而可求出常数项,(2)设展开式中系数最大的项是第项,则,从而可求出结果【小问1详解】二项式展开式的通项公式为,因为第3项和第4项的二项式系数比为,所以,化简得,解得,所以,令,得,所以常数项为【小问2详解】设展开式中系数最大的项是第项,则,,解得,因为,所以,所以展开式中系数最大的项是第5项21、(1)证明见解析;(2)为的中点,理由见解析.【解析】(1)取的中点,连接,利用面面垂直的性质定理可得出平面,可得出,再由,结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,设点,利用空间向量法可得出关于实数的方程,求出的值,即可得出结论.【详解】(1)取的中点,连接,如图:因为三角形是等边三角形,所以,又因为面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、,在上找一点,其中,,,,设面的一个法向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑行业年度工作总结(3篇)
- 消防控制室管理制度
- 手术室老护士个人工作总结模板
- KT-D606-生命科学试剂-MCE
- 小学生安全教育教案
- 暖气片安装施工方案
- 农产品直销配送合同
- 别墅门窗采购及安装协议
- 农贸市场便民服务装修合同
- 城市综合体装潢合同样本
- 现代汉语-句法成分-课件
- 关键跨越(新手篇):从业务高手到优秀主管
- 研学旅行路线设计方案
- 中班《香喷喷的轮子》ppt-图文
- 中建八局建筑工程绿色施工技术及管理手册(420余页 图文并茂)
- 部编版小学道德与法治四年级上册第四单元《让生活多一些绿色》测试题及答案
- 《旅游职业礼仪与交往》课程标准
- 出库单模板电子版
- 2023上海高考真题生物(含解析)
- 国家自然科学基金申请讲座
- 三星堆课件完整版
评论
0/150
提交评论