2024届湖师范大学附属中学数学高二上期末学业质量监测模拟试题含解析_第1页
2024届湖师范大学附属中学数学高二上期末学业质量监测模拟试题含解析_第2页
2024届湖师范大学附属中学数学高二上期末学业质量监测模拟试题含解析_第3页
2024届湖师范大学附属中学数学高二上期末学业质量监测模拟试题含解析_第4页
2024届湖师范大学附属中学数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖师范大学附属中学数学高二上期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平形六面体中,其中,,,,,则的长为()A. B.C. D.2.已知函数的导数为,且,则()A. B.C.1 D.3.已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为A. B.C. D.4.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.115.已知双曲线C:(a>0,b>0),斜率为的直线与双曲线交于不同的两点,且线段的中点为P(2,4),则双曲线的渐近线方程为()A. B.C. D.6.设点P是函数图象上任意一点,点Q的坐标,当取得最小值时圆C:上恰有2个点到直线的距离为1,则实数r的取值范围为()A. B.C. D.7.已知平面向量,且,向量满足,则的最小值为()A. B.C. D.8.设、是向量,命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则9.如下图,面与面所成二面角的大小为,且A,B为其棱上两点.直线AC,BD分别在这个二面角的两个半平面中,且都垂直于AB,已知,,,则()A. B.C. D.10.函数直线与的图象相交于A、B两点,则的最小值为()A.3 B.C. D.11.某地为应对极端天气抢险救灾,需调用A,B两种卡车,其中A型卡车x辆,B型卡车y辆,以备不时之需,若x和y满足约束条件则最多需调用卡车的数量为()A.7 B.9C.13 D.1412.如图,四棱锥中,底面是边长为的正方形,平面,为底面内的一动点,若,则动点的轨迹在()A.圆上 B.双曲线上C.抛物线上 D.椭圆上二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若关于的不等式恒成立,则实数的取值范围是__________14.已知点是抛物线的准线与x轴的交点,F为抛物线的焦点,P是抛物线上的动点,则最小值为_____15.设等差数列的前项和为,若,,则______16.经过点,的直线的倾斜角为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)讨论的单调性;(2)当有最大值,且最大值大于时,求取值范围.18.(12分)设命题p:,命题q:关于x的方程无实根.(1)若p为真命题,求实数m的取值范围;(2)若为假命题,为真命题,求实数m的取值范围19.(12分)在①直线l:是抛物线C的准线;②F是椭圆的一个焦点;③,对于C上的点A,的最小值为;在以上三个条件中任选一个,填到下面问题中的横线处,并完成解答.已知抛物线C:的焦点为F,满足_____(1)求抛物线C的标准方程;(2)是抛物线C上在第一象限内的一点,直线:与C交于M,N两点,若的面积为,求m的值20.(12分)已知圆的圆心在直线上,且圆经过点与点.(1)求圆的方程;(2)过点作圆的切线,求切线所在的直线的方程.21.(12分)在中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若,且的面积为,求的周长.22.(10分)已知圆C经过,,三点,并且与y轴交于P,Q两点,求线段PQ的长度.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量基本定理、加法的运算法则,结合空间向量数量积的运算性质进行求解即可.【详解】因为是平行六面体,所以,所以有:,因此有:,因为,,,,,所以,所以,故选:B2、B【解析】直接求导,令求出,再将带入原函数即可求解.【详解】由得,当时,,解得,所以,.故选:B3、D【解析】由题意,双曲线的渐近线方程为,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C:上,∴,∵,∴,∴,∴∴椭圆方程为:.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.4、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.5、C【解析】设,代入双曲线方程相减后可求得,从而得渐近线方程【详解】设,则,相减得,∴,又线段的中点为P(2,4),的斜率为1,∴,,∴渐近线方程为故选:C【点睛】方法点睛:本题考查求双曲线的渐近线方程,已知弦的中点(或涉及到中点),可设弦两端点的坐标,代入双曲线方程后作差,作差后式子中有直线的斜率,弦中点坐标,有.这种方法叫点差法6、C【解析】先求出代表的是以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),数形结合得到取得最小值时a的值,得到圆心C,利用点到直线距离求出圆心C到直线的距离,数形结合求出半径r的取值范围.【详解】,两边平方得:,即点P在以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),如图所示:因为Q的坐标为,则在直线,过点A作⊥l于点,与半圆交于点,此时长为的最小值,则,所以直线:,与联立得:,所以,解得:,则圆C:,则,圆心到直线的距离为,要想圆C上恰有2个点到直线的距离为1,则.故选:C7、B【解析】由题设可得,又,易知,,将问题转化为平面点线距离关系:向量的终点为圆心,1为半径的圆上的点到向量所在射线的距离最短,即可求的最小值.【详解】解:∵,而,∴,又,即,又,,∴,若,则,∴在以为圆心,1为半径的圆上,若,则,∴问题转化为求在圆上的哪一点时,使最小,又,∴当且仅当三点共线且时,最小为.故选:B.【点睛】关键点点睛:由已知确定,,构成等边三角形,即可将问题转化为圆上动点到射线的距离最短问题.8、C【解析】利用原命题与逆否命题之间的关系可得结论.【详解】由原命题与逆否命题之间的关系可知,命题“若,则”的逆否命题是“若,则”.故选:C.9、B【解析】根据题意,作,且,则四边形ABDE为平行四边形,进一步判断出该四边形为矩形,然后确定出为二面角的平面角,进而通过余弦定理和勾股定理求得答案.【详解】如图,作,且,则四边形ABDE为平行四边形,所以.因为,所以,又,所以是该二面角的一个平面角,即,由余弦定理.因为,,所以,易得四边形ABDE为矩形,则,而,所以平面ACE,则,于是.故选:B.10、C【解析】先求出AB坐标,表示出,规定函数,其中,利用导数求最小值.【详解】联立解得可得点.联立解得可得点.由题意可得解得,令,其中,∴.∴函数单调递减;.因此,的最小值为故选:C【点睛】距离的最值求解:(1)几何法求最值;(2)代数法:表示出距离,利用函数求最值.11、B【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】设调用卡车的数量为z,则,其中x和y满足约束条件,作出可行域如图所示:当目标函数经过时,纵截距最大,最大.故选:B12、A【解析】根据题意,得到两两垂直,以点为坐标原点,分别以为轴,建立空间直角坐标系,设,由题意,得到,,再由得到,求出点的轨迹,即可得出结果.【详解】由题意,两两垂直,以点为坐标原点,分别以为轴,建立如图所示的空间直角坐标系,因为底面是边长为的正方形,则,,因为为底面内的一动点,所以可设,因此,,因为平面,所以,因此,所以由得,即,整理得:,表示圆,因此,动点的轨迹在圆上.故选:A.【点睛】本题主要考查立体几何中的轨迹问题,灵活运用空间向量的方法求解即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:应用换元法,令,,不等式恒成立,转化为在恒成立,确定关系式,即可求得答案.详解:函数对称轴,最小值令,则恒成立,即在上.,在单调递增,,解得,即实数的取值范围是故答案为.点睛:本题考查了函数的单调性、最值问题、不等式恒成立问题以及二次函数的图象和性质等知识,考查了复合函数问题求解的换元法14、【解析】利用已知条件求出p,设出P的坐标,然后求解的表达式,利用基本不等式即可得出结论【详解】解:由题意可知:,设点,P到直线的距离为d,则,所以,当且仅当x时,的最小值为,此时,故答案为:【点睛】本题考查抛物线的简单性质的应用,基本不等式的应用,属于中档题15、77【解析】依题意利用等差中项求得,进而求得.【详解】依题意可得,则,故故答案为:77.16、【解析】根据两点间斜率公式得到斜率,再根据斜率确定倾斜角大小即可.【详解】根据两点间斜率公式得:,所以直线的倾斜角为:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)时,在是单调递增;时,在单调递增,在单调递减.(2).【解析】(Ⅰ)由,可分,两种情况来讨论;(II)由(I)知当时在无最大值,当时最大值为因此.令,则在是增函数,当时,,当时,因此a的取值范围是.试题解析:(Ⅰ)的定义域为,,若,则,在是单调递增;若,则当时,当时,所以在单调递增,在单调递减.(Ⅱ)由(Ⅰ)知当时在无最大值,当时在取得最大值,最大值为因此.令,则在是增函数,,于是,当时,,当时,因此a取值范围是.考点:本题主要考查导数在研究函数性质方面的应用及分类讨论思想.18、(1)(2)【解析】(1)解一元二次不等式,即可求得当为真命题时的取值范围;(2)先求得命题为真命题时的取值范围.由为假命题,为真命题可知,两命题一真一假.分类讨论,即可求得的取值范围.【详解】(1)当为真命题时,解不等式可得;(2)当为真命题时,由,可得,∵为假命题,为真命题,∴,两命题一真一假,∴或,解得或,∴m的取值范围是.【点睛】本题考查了根据命题真假求参数的取值范围,由复合命题真假判断命题真假,并求参数的取值范围,属于基础题.19、(1)(2)或.【解析】(1)选条件①,由准线方程得参数,从而得抛物线方程;选条件②,由椭圆的焦点坐标与抛物线焦点坐标相同求得得抛物线方程;选条件③,由F,A,B三点共线时,,再由两点间距离公式求得得抛物线方程;(2)求出点坐标,由点到直线距离公式求得到直线的距离,设,,直线方程代入抛物线方程,判别式大于0保证相交,由韦达定理得,由弦长公式得弦长,再计算出三角形的面积后可解得【小问1详解】选条件①:由准线方程为知,所以抛物线C的方程为选条件②:因为抛物线的焦点坐标为所以由已知得椭圆的一个焦点为.所以,又,所以,所以抛物线C的方程为选条件③:由题意可知得,当F,A,B三点共线时,,由两点间距离公式,解得,所以抛物线C的方程为.【小问2详解】把代入方程,可得,设,,联立,消去y可得,由,解得,又知,,所以,由到直线的距离为,所以,即,解得或经检验均满足,所以m的值为或.20、(1);(2)或.【解析】(1)求出线段中点,进而得到线段的垂直平分线为,与联立得交点,∴.则圆的方程可求(2)当切线斜率不存在时,可知切线方程为.当切线斜率存在时,设切线方程为,由到此直线的距离为,解得,即可到切线所在直线的方程.试题解析:(1)线段的中点为,∵,∴线段的垂直平分线为,与联立得交点,∴.∴圆的方程为.(2)当切线斜率不存在时,切线方程为.当切线斜率存在时,设切线方程为,即,则到此直线的距离为,解得,∴切线方程为.故满足条件的切线方程为或.【点睛】本题考查圆的方程的求法,圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论