2024届广东省汕头市达濠华桥中学、东厦中学高二上数学期末质量检测模拟试题含解析_第1页
2024届广东省汕头市达濠华桥中学、东厦中学高二上数学期末质量检测模拟试题含解析_第2页
2024届广东省汕头市达濠华桥中学、东厦中学高二上数学期末质量检测模拟试题含解析_第3页
2024届广东省汕头市达濠华桥中学、东厦中学高二上数学期末质量检测模拟试题含解析_第4页
2024届广东省汕头市达濠华桥中学、东厦中学高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省汕头市达濠华桥中学、东厦中学高二上数学期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在公比为为q等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.2.过双曲线(,)的左焦点作圆:的两条切线,切点分别为,,双曲线的左顶点为,若,则双曲线的渐近线方程为()A. B.C. D.3.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”的关系是()A.既不互斥也不对立 B.互斥又对立C.互斥但不对立 D.对立4.已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1 B.2C.-1 D.-25.已知命题:,使;命题:,都有,则下列结论正确的是()A.命题“”是真命题: B.命题“”是假命题:C.命题“”是假命题: D.命题“”是假命题6.已知数列的前n项和为,,,则()A. B.C. D.7.过抛物线焦点的直线与抛物线交于两点,,抛物线的准线与轴交于点,则的面积为()A. B.C. D.8.已知,命题“若,则,全为0”的否命题是()A.若,则,全不为0. B.若,不全为0,则.C.若,则,不全为0. D.若,则,全不为0.9.某班级从5名同学中挑出2名同学进行大扫除,若小王和小张在这5名同学之中,则小王和小张都没有被挑出的概率为()A. B.C. D.10.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.511.设,则有()A. B.C. D.12.抛物线的焦点为F,准线为l,点P是准线l上的动点,若点A在抛物线C上,且,则(O为坐标原点)的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列的前项和为,则的通项公式为________.14.已知长轴长为,短轴长为的椭圆的面积为.现用随机模拟的方法来估计的近似值,先用计算机产生个数对,,其中,均为内的随机数,再由计算机统计发现其中满足条件的数对有个,由此可估计的近似值为______________15.已知离心率为,且对称轴都在坐标轴上的双曲线C过点,过双曲线C上任意一点P,向双曲线C的两条渐近线分别引垂线,垂足分别是A,B,点O为坐标原点,则四边形OAPB的面积为______16.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,若该棱锥的体积为,则该正方体的体对角线长为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.18.(12分)某城市地铁公司为鼓励人们绿色出行,决定按照乘客经过地铁站的数量实施分段优惠政策,不超过12站的地铁票价如下表:乘坐站数票价(元)246现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过12站,且他们各自在每个站下地铁的可能性是相同的.(1)若甲、乙两人共付费6元,则甲、乙下地铁的方案共有多少种?(2)若甲、乙两人共付费8元,则甲比乙先下地铁的方案共有多少种?19.(12分)如图,已知等腰梯形,,为等腰直角三角形,,把沿折起(1)当时,求证:;(2)当平面平面时,求平面与平面所成二面角的平面角的正弦值20.(12分)已知等比数列{an}中,a1=1,且2a2是a3和4a1的等差中项.数列{bn}满足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求数列{an}的通项公式;(2)求数列{an+bn}前n项和Tn.21.(12分)已知椭圆的左顶点、上顶点和右焦点分别为,且的面积为,椭圆上的动点到的最小距离是(1)求椭圆的方程;(2)过椭圆的左顶点作两条互相垂直的直线交椭圆于不同的两点(异于点).①证明:动直线恒过轴上一定点;②设线段中点为,坐标原点为,求的面积的最大值.22.(10分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据等比数列的通项公式、前项和公式的基本量运算,即可得到答案;【详解】,,故A错误;,,显然数列不是等比数列,故B错误;,故C错误;,,故D成立;故选:D2、C【解析】根据,,可以得到,从而得到与的关系式,再由,,的关系,进而可求双曲线的渐近线方程【详解】解:由,,则是圆的切线,,,,所以,因为双曲线的渐近线方程为,即为故选:C3、C【解析】根据互斥事件、对立事件的定义可得答案.【详解】把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”不能同时发生,但能同时不发生,所以它们的关系是互斥但不对立.故选:C.4、D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D5、B【解析】根据正弦函数的性质判断命题为假命题,由判断命题为真命题,从而得出答案.【详解】因为的值域为,所以命题为假命题因为,所以命题为真命题则命题“”是假命题,命题“”是假命题,命题“”是真命题,命题“”是真命题故选:B6、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D7、B【解析】画出图形,利用已知条件结合抛物线的定义求解边长CF,BK,然后求解三角形的面积即可【详解】如图,设拋物线的准线为,过作于,过作于,过作于,设,则根据抛物线的定义可得,,,的面积为,故选:.8、C【解析】根据四种命题的关系求解.【详解】因为否命题是否定原命题的条件和结论,所以命题“若,则,全为0”的否命题是:若,则,不全为0,故选:C9、B【解析】记另3名同学分别为a,b,c,应用列举法求古典概型的概率即可.【详解】记另3名同学分别为a,b,c,所以基本事件为,,(a,小王),(a,小张),,(b,小王),(b,小张),(c,小王),(c,小张),(小王,小张),共10种小王和小张都没有被挑出包括的基本事件为,,,共3种,综上,小王和小张都没有挑出的概率为故选:B.10、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.11、A【解析】利用作差法计算与比较大小即可求解.【详解】因为,,所以,所以,故选:A.12、D【解析】依题意得点坐标,作点关于的对称点,则,求即为最小值【详解】如图所示:作点关于的对称点,连接,设点,不妨设,由题意知,直线l方程为,则,得所以,得,所以由,当三点共线时取等号,又所以最小值为故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】讨论和两种情况,进而利用求得答案.【详解】由题意,时,,时,,则,于是,故答案为:14、【解析】由,,根据表示的数对对应的点在椭圆的内部,且在第一象限,求出满足条件的点的概率,再转化为几何概型的面积类型求解【详解】,,表示的数对对应的点在椭圆的内部,且在第一象限,其面积为,故,得故答案为:.【点睛】本题主要考查了几何型概率应用,解题关键是掌握几何型概率求法,考查了分析能力和计算能力,属于基础题.15、2【解析】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,可得双曲线方程为,设,则到两渐近线的距离为,,从而可求四边形的面积【详解】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,又双曲线过点,,∴,故双曲线方程为,∴渐近线方程为,设,则到两渐近线的距离为,,且,∵渐近线方程为,∴四边形为矩形,∴四边形的面积为故答案为:216、.【解析】先根据棱锥的体积求出正方体的棱长,进而求出正方体的体对角线长.【详解】如图,连接,设正方体棱长为,则.所以,体对角线.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)根据等差数列的性质及题干条件,可求得,代入公式,即可求得数列的通项公式;(2)由(1)可得,利用裂项相消求和法,即可求得,即可得证.【详解】解:(1)设数列的公差为,在中,令,得,即,故①.由得,所以②.由①②解得,.所以数列的通项公式为:.(2)由(1)可得,所以,故,所以.因为,所以.【点睛】数列求和的常见方法:(1)倒序相加法:如果一个数列的前n项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n项和可以用倒序相加法;(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.18、(1)24(种)(2)21(种)【解析】(1)先根据共付费6元得一人付费2元一人付费4元,再确定人与乘坐站数,即可得结果;(2)先根据共付费8元得一人付费2元一人付费6元或两人都付费4元,再求甲比乙先下地铁的方案数.【小问1详解】由已知可得:甲、乙两人共付费6元,则甲、乙一人付费2元一人付费4元,又付费2元的乘坐站数有1,2,3三种选择,付费4元的乘坐站数有4,5,6,7四种选,所以甲、乙下地铁的方案共有(3×4)×2=24(种).【小问2详解】甲、乙两人共付费8元,则甲、乙一人付费2元一人付费6元或两人都付费4元;当甲付费2元,乙付费6元时,甲乘坐站数有1,2,3三种选择,乙乘坐站数有8,9,10,11,12五种选择,此时,共有35=15(种)方案;当两人都付费4元时,若甲在第4站下地铁,则乙可在第5,6,7站下地铁,有3种方案;若甲在第5站下地铁,则乙可在第6,7站下地铁,有2种方案;若甲在第6站下地铁,则乙可在第7站下地铁,有1种方案;综上,甲比乙先下地铁的方案共有(种).19、(1)证明见解析(2)【解析】(1)取的中点E,连,证明四边形为平行四边形,从而可得为等边三角形,四边形为菱形,从而可证,,即可得平面,再根据线面垂直的性质即可得证;(2)取的中点M,连接,以B为空间坐标原点,向量分别为x,y,z轴建立空间直角坐标系,利用向量法即可得出答案.【小问1详解】解:取的中点E,连,∵,∴,∵,∴四边形为平行四边形,∵,∴,∵,∴为等边三角形,四边形为菱形,∴,,∴∴,∵,,,平面,,∴平面,∵平面,∴;【小问2详解】解:取的中点M,连接,由(1)知,,∵平面平面,,∴平面,以B为空间坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,设平面的法向量为,由,,有,取,可得,设平面的法向量为,由,,有,取,有,有,故平面与平面所成二面角的正弦值为20、(1);(2).【解析】(1)根据已知条件求出等比数列的公比,然后利用等比数列通项公式求解即可;(2)根据已知求出数列的通项公式,再结合(1)中结论并利用分组求和法求解即可.【详解】(1)设等比数列公比为q,因为,所以,因为是和的等差中项,所以,即,解得,所以.故答案为:.(2)因为,所以为等差数列,因为,,所以公差,故.所以.故答案为:.21、(1)(2)①证明见解析;②【解析】(1)根据题意得,,解方程即可;(2)①设直线:,直线:,联立曲线分别求出点和的坐标,求直线方程判断定点即可;②根据题意得,代入求最值即可.【小问1详解】根据题意得,,,又,三个式子联立解得,,,所以椭圆的方程为:【小问2详解】①证明:设两条直线分别为和,根据题意和得斜率存在且不等于;因为,所以设直线:,直线:;由,解得,所以,同理,.当时,,所以直线的方程为:,整理得,此时直线过定点;当时,直线的方程为:,此时直线过定点,故直线恒过定点.②根据题意得,,,,所以,当且仅当,即时等号成立,故的面积的最大值为:.【点睛】解决直线与椭圆综合问题时,要注意:(1)注意观察应用题设中的每一个条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论