北师大版选修2-1-圆锥曲线的共同特征_第1页
北师大版选修2-1-圆锥曲线的共同特征_第2页
北师大版选修2-1-圆锥曲线的共同特征_第3页
北师大版选修2-1-圆锥曲线的共同特征_第4页
北师大版选修2-1-圆锥曲线的共同特征_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

回顾2:求曲线方程的一般步骤有哪些?

例1:曲线上的点M(x,y)到定点F(2,0)的距离和它到定直线l:x=8的距离之比是常数,求曲线方程.简答:(1)建系设点(2)列式(3)代换(4)化简(5)证明【设计意图】:通过回顾和动手实践,调动了学生学习的积极性,让学生在“做”中学数学,提高了运算能力和转化化归思想,巩固了用坐标法求曲线方程.让学生动手实践,并请一个学生到上面演板教学过程(二)实例探索,发现新知

(视频1)第二页第二页,共12页。FMoxy••N提出问题:这是哪种曲线的方程?由此得化简得:解:作MN垂直l于N,设d=|MN|根据题意可知:发现:定点F是一个焦点,常数是离心率

教学过程(二)实例探索,发现新知再让学生计算它的焦点坐标和离心率答案:椭圆第三页第三页,共12页。答案:平面内与一个定点和一条定直线距离相等的点的集合叫作抛物线,其中定点是它的焦点,定直线是它的准线.回顾3:抛物线是怎样定义的?什么是它的焦点和准线?教学过程(二)实例探索,发现新知

结论:(1)椭圆也是到定点距离与到定直线的距离之比是常数的点的轨迹,这与抛物线有类似的特征.(2)这个定点是椭圆的一个焦点,这个常数是椭圆的离心率,这条定直线叫作相应于这个焦点的准线【设计意图】:通过对学生的解题过程的点评,规范了解题步骤;再经过老师的引导,学生发现椭圆与抛物线有类似特征,分散了“圆锥曲线共同特征的理解”这一难点,体会了从特殊到一般的推理方法,提高了数形结合能力.第四页第四页,共12页。

例2:曲线上的点M(x,y)到定点F(5,0)的距离和它到定直线

的距离之比是常数,求曲线方程.(让学生自主解答,并请一个学生到上面演板)再让学生计算一下它的焦点坐标和离心率答案:曲线方程为这是双曲线的方程,所以该曲线是双曲线发现:定点F也是一个焦点,常数也是离心率【设计意图】:在自主探索的过程中,使学生完全成了学习的主人,由被动的接受变成主动的获取,进一步巩固了用坐标法求曲线方程,突出了重点;另外经过老师引导学生发现双曲线与抛物线也有类似特征.教学过程(二)实例探索,发现新知第五页第五页,共12页。【设计意图】:通过分组讨论,让学生相互交流,互相学习,培养他们的合作意识和谦虚好学的品质,使他们的归纳能力和类比能力都得到了训练,得出了圆锥曲线的共性特征,突破了难点,突出了重点.

教学过程(三)思考交流,概括定义思考交流:例1与例2有哪些相同处和不同处?请同学们分组讨论,相互探讨圆锥曲线的共同特征(即第二定义):圆锥曲线上的点到一个定点的距离与它到定直线的距离之比为定值e.当0<e<1时,圆锥曲线是椭圆;e>1时,圆锥曲线是双曲线;当e=1时,圆锥曲线是抛物线.其中定点是圆锥曲线的一个焦e点,定直线是相应于这个焦点的准线.(视频23)第六页第六页,共12页。联想:点到直线的距离公式分析:指导学生从式子的结构形式入手,找出式子的几何意义,利用圆锥曲线的第二定义进行解题.【设计意图】本例用一个新颖特殊的式子激起学生的兴趣,解题中通过回顾、联想和分析,一步一步地化解了圆锥曲线第二定义应用中的难点,培养了学生的观察能力和逆向思维的能力,训练了学生解题的灵活性.教学过程(四)指导应用,深化理解

(视频45)回顾4:课本P73页的思考交流

“请说出表达式的几何意义”例3:方程表示的曲线是()

A.椭圆B.双曲线C.抛物线D.直线第七页第七页,共12页。例3.方程表示的曲线是()A.椭圆B.双曲线C.抛物线D.直线B变式:若将本题中的方程变为呢?让学生自主解答教学过程(四)指导应用,深化理解【设计意图】通过变式进一步巩固刚取得的成果,加深了圆锥曲线第二定义的理解.

(视频6)第八页第八页,共12页。【设计意图】通过学生的独立完成,进一步巩固了知识,运用了知识.

教学过程1.曲线上的点到定点F(2,0)的距离和它到定直线l:x=8的距离之是常数2,求曲线方程.2.椭圆+=1上一点P到一个焦点F1(-3,0)的距离等于3,求它到直线x=的距离.练习巩固

(五)反馈练习,落实新知第九页第九页,共12页。1.知识总结(教师引导)2.思想方法总结(学生完成)到焦点的距离相互转化到相应准线的距离圆锥曲线的共同特征.小结:

(1)数形结合的思想方法(2)转化化归的思想方法教学过程(六)归纳小结,布置作业【设计意图】通过总结,使学生对所学知识有一个完整的体系,突出了重点,抓住了关键,培养了概括能力.

第十页第十页,共12页。课时作业必做题:

1.课本P89习题3-4A组:4.

2.椭圆上有一点P,它到椭圆的左准线的距离等于10,求点P到它的右焦点的距离。选作题:

已知点A(3,1)F(2,0),点P在双曲线上,

求的最小值.

【设计意图】一方面为了巩固知识,形成技能,培养思维能力,发现教学中的漏洞和不足;另一方面分层要求,使不同层次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论