2024届辽宁省营口市大石桥市石佛中学八上数学期末监测试题含解析_第1页
2024届辽宁省营口市大石桥市石佛中学八上数学期末监测试题含解析_第2页
2024届辽宁省营口市大石桥市石佛中学八上数学期末监测试题含解析_第3页
2024届辽宁省营口市大石桥市石佛中学八上数学期末监测试题含解析_第4页
2024届辽宁省营口市大石桥市石佛中学八上数学期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省营口市大石桥市石佛中学八上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将长方形纸片按如图所示的方式折叠,BC、BD为折痕,若∠ABC=35°,则∠DBE的度数为A.55° B.50° C.45° D.60°2.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为()A.8 B.7 C.6 D.53.立方根是-3的数是().A.9 B.-27 C.-9 D.274.禽流感病毒的形状一般为球形,直径大约为0.000000102米,用科学记数法表示为()米A. B. C. D.5.如图,已知△ABC中,∠A=75°,则∠BDE+∠DEC=()A.335° B.135° C.255° D.150°6.已知,则()A.7 B.11 C.9 D.17.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B. C.0或6 D.或68.张燕同学按如图所示方法用量角器测量的大小,她发现边恰好经过的刻度线末端.你认为的大小应该为()A. B. C. D.9.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动。同时,点Q在线段CA上由C点向A点运动。若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2 B.5 C.1或5 D.2或310.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD11.如果=2a-1,那么()A.a< B.a≤ C.a> D.a≥12.如图,在△ABC中,AB=6,AC=7,BC=5,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.18 B.13 C.12 D.11二、填空题(每题4分,共24分)13.如图,AB=DB,∠1=∠2,请你添加一个适当的条件,使△ABC≌△DBE,则需添加的条件是____(只要写一个条件).14.如图,在梯形ABCD中,AD∥BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为_____.15.如图所示,为估计池塘两岸边,两点间的距离,在池塘的一侧选取点,分别取、的中点,,测的,则,两点间的距离是______.16.如图,函数和的图像相交于点A(m,3),则不等式的解集为____.17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).18.在中是分式的有_____个.三、解答题(共78分)19.(8分)计算:(x+3)(x﹣4)﹣x(x+2)﹣520.(8分)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.21.(8分)我们来探索直角三角形分割成若干个等腰三角形的问题.定义:将一个直角三角形分割成个等腰三角形的分割线叫做分线.例如将一个直角三角形分割成个等腰三角形,需要条分割线,每一条分割线都是分线.(1)直角三角形斜边上的什么线一定是分线?(2)如图1是一个任意直角,,请画出分线;(3)如图2,中,,,,请用两种方法画出分线,并直接写出每种方法中分线的长.22.(10分)定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A为36°,求证:△ABC是锐角三角形;(2)若△ABC是倍角三角形,,∠B=30°,AC=,求△ABC面积;(3)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.23.(10分)如图,三个顶点的坐标分别为.(1)请画出关于轴对称的,并写出的坐标;(2)在轴上求作一点,使的周长最小,并直接写出点的坐标.24.(10分)如图,B、A、F三点在同一直线上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.请你用其中两个作为条件,另一个作为结论,构造一个真命题,并证明.己知:______________________________________________________.求证:______________________________________________________.证明:25.(12分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?26.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据折叠的性质可知∠ABC=∠A’BC,∠DBE=∠DBE’,然后根据平角等于180°代入计算即可得出答案.【题目详解】解:由折叠的性质可知∠ABC=∠A’BC=35°,∠DBE=∠DBE’,∴∠EBE’=180°-∠ABC-∠A’BC=180°-35°-35°=110°,∴∠DBE=∠DBE’=∠EBE’=×110°=55°.故选A.【题目点拨】本题考查了折叠的性质和角的计算,熟知折叠后重合的角相等是解决此题的关键.2、B【题目详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,AE=AC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6−4)+5=7故选B.【题目点拨】本题考查全等三角形的应用.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、HL.通过证明三角形全等可以得到相等的边或角,可将待求量进行转化,使问题迎刃而解.3、B【分析】本题考查了立方根的概念,任何正数都有立方根,它们和被开方数的符号相同.由于立方根和立方为互逆运算,因此只需求-3的立方即可.【题目详解】解:立方根是-3的数是=−1.

故选:B.【题目点拨】了解立方根和立方为互逆运算,是理解立方根的关键.4、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.000000102=1.02×10-7,故选:C.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、C【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC=360°-105°=255°.【题目详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【题目点拨】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.6、A【解题分析】将原式两边都平方,再两边都减去2即可得.【题目详解】解:∵m+=3,∴m2+2+=9,则m2+=7,故选A.【题目点拨】本题考查完全平方公式,解题的关键是掌握完全平方公式.7、D【解题分析】先用含k的代数式表示出x的值,然后根据方程的解是正整数,且k为整数讨论即可得到k的值.【题目详解】∵,∴9-3x=kx,∴kx+3x=9,∴x=,∵方程的解是正整数,且k为整数,∴k+3=1,3,9,k=-2,0,6,当k=0时,x=3,分式方程无意义,舍去,∴k=-2,6.故选D.【题目点拨】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.8、D【分析】如图,连接DC,可知∠ODC=80°,然后根据等腰三角形的性质求解即可.【题目详解】如图,连接DC,∵OD=CD,∠ODC=80°,∴∠AOB=(180°-80°)÷2=50°.故选D.【题目点拨】本题考查了等腰三角形的性质,熟练掌握等腰三角形两个底角相等是解答本题的关键.9、D【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【题目详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=AB=6cm,∵BD=PC,∴BP=8-6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=1(m/s).故v的值为2或1.故选择:D.【题目点拨】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.10、B【解题分析】试题分析:已知OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,根据角平分线的性质可得PC=PD,A正确;在Rt△OCP与Rt△ODP中,OP=OP,PC=PD,由HL可判定△OCP≌△ODP,根据全等三角形的性质可得∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故答案选B.考点:角平分线的性质;全等三角形的判定及性质.11、D【解题分析】∵=2a-1,∴,解得.故选D.12、C【解题分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【题目详解】∵ED是AB的垂直平分线,∴AD=BD.∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=7+5=1.故选C.【题目点拨】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.二、填空题(每题4分,共24分)13、BC=BE(答案不唯一)【分析】由∠1=∠2利用角的和差可得∠DBE=∠ABC,现在已知一个角和角的一边,再加一个边,运用SAS可得三角形全等.【题目详解】解:∵∠1=∠2∴∠DBE=∠ABC,又∵AB=DB,∴添加BC=BE,运用SAS即可证明△ABC≌△DBE.故答案为:BC=BE(答案不唯一).【题目点拨】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知条件选择适当的判定方法是解答本题的关键.14、1【分析】首先过点A作AE∥CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD是平行四边形,△ABE是等边三角形,继而求得答案.【题目详解】解:过点A作AE∥CD,交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∠B=180°﹣∠BAD=180°﹣120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=1.故答案为:1.【题目点拨】考核知识点:平行四边形性质.作辅助线是关键.15、36【分析】根据E、F是CA、CB的中点,即EF是△CAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【题目详解】解:据E、F是CA、CB的中点,即EF是△CAB的中位线,∴EF=AB,∴AB=2EF=2×18=36.故答案为36.【题目点拨】本题考查了三角形的中位线定理应用,灵活应用三角形中位线定理是解题的关键.16、x<-1.【分析】由图象可知,在点A的左侧,函数的图像在的图像的上方,即,所以求出点A的坐标后结合图象即可写出不等式的解集.【题目详解】解:∵和的图像相交于点A(m,3),∴∴∴交点坐标为A(-1,3),

由图象可知,在点A的左侧,函数的图像在的图像的上方,即∴不等式的解集为x<-1.

故答案是:x<-1.【题目点拨】此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.17、AE=AD(答案不唯一).【解题分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加AE=AD,利用SAS来判定其全等;或添加∠B=∠C,利用ASA来判定其全等;或添加∠AEB=∠ADC,利用AAS来判定其全等.等(答案不唯一).18、1【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:分母中有未知数的有:,共有1个.故答案为:1.【题目点拨】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.三、解答题(共78分)19、﹣3x﹣1.【分析】先根据整式的乘法法则算乘法,再合并同类项即可.【题目详解】解:原式==.【题目点拨】本题考查整式的混合运算,解题的关键是熟练掌握混合运算顺序以及相关运算法则.20、(1)每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是15个;(2)租用小客车数量的最大值为1.【解题分析】(1)根据题意结合每辆大客车的乘客座位数比小客车多17个以及师生共100人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为100+10,进而得出不等式求出答案.【题目详解】(1)设每辆小客车的乘客座位数是个,大客车的乘客座位数是个,根据题意可得:解得答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是15个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则18a+15(11−a)≥100+10,解得:.符合条件的a最大整数为1,答:租用小客车数量的最大值为1.【题目点拨】本题主要考查了一元一次不等式的应用以及二元一次方程组的应用,解题关键是正确得出不等式的关系.21、(1)中线;(2)画图见解析;(3)方法一:画图见解析,,.方法二:画图见解析,,【分析】(1)根据直角三角形斜边中线的性质即可解决问题;(2)作出斜边上的高,再作出两个小直角三角形的斜边的中线即可;(3)根据三分线的定义,即可画出图形,然后根据所画图形求解即可;【题目详解】解:(1)直角三角形斜边中线是斜边的一半,故答案为中线.(2)如图,,、分别为、的中点,则、、即为分线.(3)方法一:如图,平分,为的中点,∵,,∴∠ABC=60°,∵,平分,∴∠ABD=∠CBD=30°,∴,设CD=x,则BD=2x,∴x2+1=(2x)2,∴,∴,∵为的中点,∴.方法二:如图,,为的垂直平分线与的交点,∵∴,∴∠EBD=30°.∵为的垂直平分线与的交点,∴EB=ED,∴,∴∠AED=30°.∵,∴,∴DE=AD.∵,,∵,,∴AB=2,∴AC=,∴.【题目点拨】本题考查了新定义问题、等腰三角形的判定和性质、含30°角的性质、勾股定理、直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题.22、(1)证明见解析;(2);(3)△ADC是倍角三角形,证明见解析.【分析】(1)根据题意证明△ABC是等腰三角形,得出三个内角的度数,得证△ABC是锐角三角形(2)分两种情况讨论,①当∠B=2∠C②当∠A=2∠B或∠A=2∠C时,求出△ABC面积(3)证明△ABD≌△AED,从而证明CE=DE,∠C=∠BDE=2∠ADC,△ADC是倍角三角形【题目详解】(1)∵AB=AC,∴∠B=∠C∵∠A+∠B+∠C=180°,∠A=36°∴∠B=∠C=72°∴∠A=2∠C即△ABC是锐角三角形(2)∵∠A>∠B>∠C,∠B=30°①当∠B=2∠C,得∠C=15°过C作CH⊥直线AB,垂足为H,可得∠CAH=15°∴AH=CH=AC=1.∴BH=∴AB=BH-AH=-1∴S=②当∠A=2∠B或∠A=2∠C时,与∠A>∠B>∠C矛盾,故不存在。综上所述,△ABC面积为(3)∵AD平分∠BAE,∴∠BAD=∠EAD∵AB=AE,AD=AD,∴△ABD≌△AED.∴∠ADE=∠ADB,BD=DE.又∵AB+AC=BD,∴AE+AC=BD,即CE=BD.∴CE=DE.∴∠C=∠BDE=2∠ADC.∴△ADC是倍角三角形.【题目点拨】本题考察了全等三角形的判定定理、三角形面积公式以及倍角三角形的定义,根据题意给出的新定义求解是解题的关键23、(1)见解析;A1(1,1)、B1(4,2)、C1(3,4);(2)见解析;P点坐标为(﹣2,0).【分析】(1)先在坐标系中分别画出点A,B,C关于y轴的对称点,再连线,得到,进而写出、、的坐标即可;(2)先画出点B关于x轴的对称点B′,再连接B′A交x轴于点P,即为所求.【题目详解】(1)如图所示:△A1B1C1,即为所求,A1、B1、C1的坐标分别为A1(1,1)、B1(4,2)、C1(3,4);(2)如图所示,画出点B关于x轴的对称点B′,连接B′A交x轴于点P,此时的值最小,即△PAB的周长最小,此时P点坐标为:(﹣2,0).【题目点拨】本题主要考查平面直角坐标系中,图形的轴对称变换,通过点的轴对称,求两线段和的最小值,是解题的关键.24、见解析.【解题分析】本题答案不唯一,可以用(1)和(2)作为已知条件,(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论