版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省泉州市泉港一中学数学八上期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列给出的四组数中,不能构成直角三角形三边的一组是()A.3,4,5 B.5,12,13 C.1,2, D.6,8,92.如图,已知AD=CB,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠DAB=∠CBA C.∠CAB=∠DBA D.∠C=∠D=90°3.分式中的字母满足下列哪个条件时分式有意义()A. B. C. D.4.的平方根是()A.±16 B. C.±2 D.5.把式子2x(a﹣2)﹣y(2﹣a)分解因式,结果是()A.(a﹣2)(2x+y) B.(2﹣a)(2x+y)C.(a﹣2)(2x﹣y) D.(2﹣a)(2x﹣y)6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行7.下列各式从左到右的变形正确的是()A.= B.=C.=- D.=8.菱形的对角线的长分别为6,8,则这个菱形的周长为()A.8 B.20 C.16 D.329.在汉字“生活中的日常用品”中,成轴对称的有()A.3个 B.4个 C.5个 D.6个10.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=1.则图中阴影部分的面积为()A.10 B.12 C.16 D.1111.在平面直角坐标系中,若将点的横坐标乘以,纵坐标不变,可得到点,则点和点的关系是()A.关于轴对称B.关于轴对称C.将点向轴负方向平移一个单位得到点D.将点向轴负方向平移一个单位得到点12.4张长为a、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中空白部分的面积为,阴影部分的面积为.若,则a、b满足()A. B. C. D.二、填空题(每题4分,共24分)13.已知三角形的三边长均为整数,其中两边长分别为1和3,则第三边长为_______.14.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.15.如图,在Rt△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②点D在线段AB的垂直平分线上;③S△DAC:S△ABC=1:2,正确的序号是_____.16.如图,将一个边长分别为1、3的长方形放在数轴上,以原点O为圆心,长方形的对角线OB长为半径作弧,交数轴正半轴于点A,则点A表示的实数是_______.17.十二边形的内角和是________度.正五边形的每一个外角是________度.18.在实数0.23,4.,π,-,,0.3030030003…(每两个3之间增加1个0)中,无理数的个数是_________个.三、解答题(共78分)19.(8分)已知与成正比例,且当时,.(1)求与的函数表达式;(2)当时,求的取值范围.20.(8分)(1)若a﹣b=2,ab=﹣3,则﹣的值为;(2)分解因式:(a+4)(a﹣4)﹣4+a21.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为1.22.(10分)计算:(1)()﹣2+﹣(2)(﹣)2﹣(+)(﹣)23.(10分)如图,四边形ABCD中,,,,点P自点A向D以1cm/s的速度运动,到D点即停止;点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ分原四边形为两个新四边形;则当P,Q同时出发_____秒后其中一个新四边形为平行四边形.24.(10分)在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AEDB(填“﹥”“﹤”或“=”),并说明理由;(2)当点E为AB上任意一点时,如图②,AEDB(填“﹥”“﹤”或“=”),并说明理由;(提示:过点E作EF∥BC,交AC于点F)(3)在等边△ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,请你画出图形,并直接写出相应的CD的长.25.(12分)如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图(1),若∠AOC=,求∠DOE的度数;(2)如图(2),将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.26.如图,在中,,点为直线上一动点,连接,以为直角边作等腰直角三角形.(1)如图1,若当点在线段上时(不与点重合),证明:;(2)如图2,当点在线段的延长线上时,试猜想与的数量关系和位置关系,并说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【题目详解】A.∵32+42=52,∴能构成直角三角形三边;B.∵52+122=132,∴能构成直角三角形三边;C.∵12+()2=22,∴能构成直角三角形三边;D.∵62+82≠92,∴不能构成直角三角形三边.故选:D.【题目点拨】本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、C【分析】由全等三角形的判定可求解.【题目详解】当AC=BD时,且AD=BC,AB=AB,由“SSS”可证△ABC≌△BAD;当∠DAB=∠CBA时,且AD=BC,AB=AB,由“SAS”可证△ABC≌△BAD;当∠CAB=∠DBA时,不能判定△ABC≌△BAD;当∠C=∠D=90°时,且AD=BC,AB=AB,由“HL”可证Rt△ABC≌Rt△BAD;故选C.【题目点拨】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.3、B【分析】利用分式有意义的条件是分母不等于零,进而求出即可.【题目详解】x−1≠0时,分式有意义,即故选B.【题目点拨】此题主要考查了分式有意义的条件,利用分母不等于零求出是解题关键.4、B【分析】先计算,再根据平方根的定义即可得到结论.【题目详解】解:∵,∴2的平方根是,故选:B.【题目点拨】本题考查平方根的定义,注意本题求的是的平方根,即2的平方根.5、A【分析】根据提公因式法因式分解即可.【题目详解】2x(a﹣2)﹣y(2﹣a)=2x(a﹣2)+y(a﹣2)=(a﹣2)(2x+y).故选:A.【题目点拨】此题考查的是因式分解,掌握用提公因式法因式分解是解决此题的关键.6、B【分析】根据轴对称的性质结合图形分析可得.【题目详解】解:观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.7、D【解题分析】解:A.根据分式的基本性质应该分子和分母都除以b,故本选项错误;B.根据分式的基本性质,分子和分母都加上2不相等,故本选项错误;C.,故本选项错误;D.∵a−2≠0,∴,故本选项正确;故选D.8、B【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【题目详解】由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,
则AB==5,
故这个菱形的周长L=4AB=1.
故选:B.【题目点拨】此题考查勾股定理,菱形的性质,解题关键在于根据勾股定理计算AB的长.9、A【分析】根据轴对称的定义,找出成轴对称的字,即可解答.【题目详解】在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选A.【题目点拨】本题考查轴对称,解题关键是熟练掌握轴对称的定义.10、C【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP=S矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.【题目详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP=S矩形MPFD,又∵S△PBE=S矩形EBNP,S△PFD=S矩形MPFD,∴S△DFP=S△PBE=×2×1=1,∴S阴=1+1=16,故选C.【题目点拨】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.11、B【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点是(-x,y),据此解答本题即可.【题目详解】解:∵在直角坐标系中的横坐标乘以,纵坐标不变,∴的坐标是(-1,2),∴和点关于y轴对称;故选:B.【题目点拨】本题考查的是平面直角坐标系中关于坐标轴对称的两点坐标之间的关系:关于纵坐标对称,则纵坐标不变,横坐标互为相反数.12、D【分析】先用a、b的代数式分别表示,,再根据,得,整理,得,所以.【题目详解】解:,,∵,∴,整理,得,∴,∴.故选D.【题目点拨】本题考查了整式的混合运算,熟练运用完全平方公式是解题的关键.二、填空题(每题4分,共24分)13、3【分析】首先求出第三边长的取值范围,选取整数即可.【题目详解】∵三角形的两边长分别为1和3,∴设第三边长为x,则第三边长的取值范围为2<x<4,且三边长均为整肃,∴第三边长为3.【题目点拨】本题考查了三角形第三边的取值范围,掌握三角形三边关系是解题的关键.14、30【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【题目详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,故答案为30°.15、①②【解题分析】①据作图的过程可以判定AD是∠BAC的角平分线;②利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的垂直平分线上;③利用10度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【题目详解】①根据作图的过程可知,AD是∠BAC的平分线.
故①正确;
②如图,∵在△ABC中,∠C=90°,∠B=10°,
∴∠CAB=60°.
又∵AD是∠BAC的平分线,
∴∠1=∠2=∠CAB=10°,∵∠1=∠B=10°,
∴AD=BD,∴△ABD为等腰三角形∴点D在AB的垂直平分线上.
故②正确;
③∵如图,在直角△ACD中,∠2=10°,
∴CD=AD,
∴BC=CD+BD=AD+AD=AD,∴S△DAC=AC•CD=AC•AD,
∴S△ABC=AC•BC=AC•AD=AC•AD,
∴S△DAC:S△ABC=AC•AD:AC•AD=1:1.
故③错误.
故答案为:①②.【题目点拨】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图,解题关键是熟悉等腰三角形的判定与性质.16、【分析】根据勾股定理求出OB,根据实数与数轴的关系解答.【题目详解】在Rt△OAB中,OB==,∴点A表示的实数是,故答案为:.【题目点拨】本题考查的是勾股定理,实数与数轴,掌握如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2是解题的关键.17、18001【分析】根据多边形的内角和,多边形的外角和等于360°即可得到解答.【题目详解】解:十二边形的内角和,正五边形的每一个外角,故答案为:1800,1.【题目点拨】本题考查了多边形的内角与外角,熟练掌握多边形的内角和和外角和是解题的关键.18、3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【题目详解】解:在所列的实数中,无理数有π,,0.3030030003…(每两个3之间增加1个0)这3个,
故答案为:3【题目点拨】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.三、解答题(共78分)19、(1)y=2x-4;(2)-6<y<1.【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;
(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【题目详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),
把x=1,y=-2代入y=k(x-2),
得k(1-2)=-2,解得:k=2,
所以解析式为:y=2(x-2)=2x-4;
(2)把x=-1,x=2分别代入y=2x-4,
可得:y=-6,y=1,∵y=2x-4中y随x的增大而增大,
∴当-1<x<2时,y的范围为-6<y<1.【题目点拨】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.20、(1);(2)(a﹣4)(a+5)【分析】(1)先将所要求的式子进行化简得到,再将已知代入计算即可;(2)先将﹣4+a变为+(a-4),然后再提取公因式即可.【题目详解】解:(1)﹣=,∵a﹣b=2∴b-a=-2将b-a=-2,ab=﹣3代入得﹣==;(2)(a+4)(a﹣4)﹣4+a=(a﹣4)(a+4+1)=(a﹣4)(a+5).【题目点拨】本题考查了分式的化简求值和分解因式,解题的关键是对原式进行变形.21、(1)画图见解析;(2)画图见解析.【分析】(1)以3和2为直角边作出直角三角形,斜边即为所求;
(2)以3和1为直角边作出直角三角形,斜边为正方形的边长,如图②所示.【题目详解】(1)如图①所示:(2)如图②所示.【题目点拨】考查了勾股定理,熟练掌握勾股定理是解本题的关键.22、(1)4+;(2)4﹣2【分析】(1)先根据负整数指数幂的意义计算,然后把二次根式化为最简二次根式后合并即可;(2)利用完全平方公式和平方差公式计算.【题目详解】解:(1)原式=;(2)原式.【题目点拨】本题结合平方差和完全平方公式考查了二次根式的运算,熟练掌握公式与二次根式的运算性质是解答关键.23、4或5【分析】结合题意,根据平行四边形的性质,列一元一次方程并求解,即可得到答案.【题目详解】设点P和点Q运动时间为t∵,点P自点A向D以1cm/s的速度运动,到D点即停止∴点P运动时间秒∵,点Q自点C向B以2cm/s的速度运动,到B点即停止∴点Q运动时间秒∴点P和点Q运动时间直线PQ分原四边形为两个新四边形,其中一个新四边形为平行四边形,分两种情况分析:当四边形PDCQ为平行四边形时结合题意得:,∴∴,且满足当四边形APQB为平行四边形时结合题意得:,∴∴,且满足∴当P,Q同时出发秒4或5后其中一个新四边形为平行四边形.【题目点拨】本题考查了平行四边形、一元一次方程、一元一次不等式的知识;解题的关键是熟练掌握平行四边形、一元一次方程、一元一次不等式的性质,从而完成求解.24、(1)=,理由见解析;(2)=,理由见解析;(3)见解析【分析】(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;
(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;
(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.【题目详解】解:(1)=,理由如下:∵ED=EC∴∠D=∠ECD∵△ABC是等边三角形∴∠ACB=∠ABC=60°∵点E为AB中点∴∠BCE=∠ACE=30°,AE=BE∴∠D=30°∴∠DEB=∠ABC-∠D=30°∴∠DEB=∠D∴BD=BE∴BD=AE(2)过点E作EF∥BC,交AC于点F∵△ABC是等边三角形∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,∠FEC=∠ECB∴∠EFC=∠EBD=120°∵ED=EC∴∠D=∠ECD∴∠D=∠FEC在△EFC和△DBE中∴△EFC≌△DBE∴EF=DB∵∠AEF=∠AFE=60°∴△AEF为等边三角形∴AE=EF∴DB=AE(3)解:CD=1或3,
理由是:分为两种情况:
①如图3,过A作AM⊥BC于M,过E作EN⊥BC于N,
则AM∥EN,
∵△ABC是等边三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=BC=,
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
∴△AMB∽△ENB,
∴,
∴,
∴BN=,
∴CN=1+=,
∴CD=2CN=3;
②如图4,作AM⊥BC于M,过E作EN⊥BC于N,
则AM∥EN,
∵△ABC是等边三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=BC=,
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
∴,
∴=,
∴MN=1,
∴CN=1-=,
∴CD=2CN=1,
即CD=3或1.【题目点拨】本题综合考查了等边三角形的性质和判定,等腰三角形的性质,全等三角形的性质和判定,三角形的外角性质等知识点的应用,熟练掌握等边三角形性质和判定是解题的关键.25、(1)20°;(2)当∠AOC的度数是60°或108°时,∠COE=2∠DOB【分析】(1)依据邻补角的定义以及角平分线的定义,即可得到∠COE的度数,进而得出∠DOE的度数;(2)设∠AOC=α,则∠BOC=180°-α,依据OE平分∠BOC,可得∠COE=×(180°-α)=90°-α,再分两种情况,依据∠COE=2∠DOB,即可得到∠AOC的度数.【题目详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国汽车前档安全玻璃产业未来发展趋势及投资策略分析报告
- 2024-2030年中国永磁电机行业发展状况投资策略研究报告
- 2024-2030年中国水果罐头市场竞争态势及运营效益预测报告
- 2024-2030年中国水产苗种培育市场运营状况及投资战略研究报告
- 2024-2030年中国氨甲环酸行业发展态势及投资价值评估报告
- 2024-2030年中国格蓬酯境外融资报告
- 2024-2030年中国木制家具制品行业发展模式及投资规划分析报告
- 2024-2030年中国有源电力滤波器APF行业发展现状及运营模式分析报告版
- 2024-2030年中国智能交通市场发展规模及前景趋势分析报告
- 2024-2030年中国无针血糖测试仪市场竞争动态与需求规模预测报告
- 电力增容工程投标方案(技术标)
- 国内外建筑节能现状及发展
- 一级综合医院设置要求规范
- 《消费心理学》课程标准
- DB5117-T 76-2023 磷石膏基植生材料生态修复应用技术规范
- 国开电大本科《人文英语4》机考真题(第十九套)
- 新产品试产管理流程
- 煤矿全员安全教育培训考试试卷+答案
- 丽江地区古城区2023-2024学年数学四年级第一学期期末统考模拟试题含答案
- 新中国史2023年春季学习通超星课后章节答案期末考试题库2023年
- 粉尘爆炸的危害与预防教学课件
评论
0/150
提交评论