版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省颍上县第五中学八年级数学第一学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在直角坐标系中,函数与的图像大数是()A. B.C. D.2.如图,已知,垂足为,,,则可得到,理由是()A. B. C. D.3.函数的自变量x的取值范围是()A. B.C.且 D.或4.如图,在中,,观察图中尺规作图的痕迹,可知的度数为()A. B. C. D.5.线段CD是由线段AB平移得到的,点A(3,-1)的对应点C的坐标是(-2,5),则点B(0,4)的对应点D的坐标是().A.(5,-7) B.(4,3) C.(-5,10) D.(-3,7)6.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A.1个 B.2个 C.3个 D.4个7.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对 B.3对 C.4对 D.5对8.如果把分式中的x、y同时扩大为原来的2倍,那么该分式的值()A.不变 B.扩大为原来的2倍 C.缩小为原来的 D.缩小为原来的9.下列哪个点在第四象限()A. B. C. D.10.下列代数式,,,,,,,,中,分式有()个.A.5 B.4 C.3 D.2二、填空题(每小题3分,共24分)11.如图,△ABC中,AB=AC,BC=5,,AD⊥BC于点D,EF垂直平分AB,交AC于点F,在EF上确定一点P,使PB+PD最小,最这个最小值为_______________12.已知实数a、b在数轴上的位置如图所示,则化简的结果为________13.的倒数是____.14.已知是完全平方式,则的值为_________.15.如图所示,在中,,,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则的度数为(________)16.若代数式的值为零,则x的取值应为_____.17.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.18.已知:如图,和为两个共直角顶点的等腰直角三角形,连接、.图中一定与线段相等的线段是__________.三、解答题(共66分)19.(10分)探索与证明:(1)如图1,直线经过正三角形的项点,在直线上取两点,,使得,.通过观察或测量,猜想线段,与之间满足的数量关系,并子以证明:(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图2的位置,并使,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.20.(6分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.(6分)如图,正方形是由两个小正方形和两个小长方形组成的,根据图形解答下列问题:(1)请用两种不同的方法表示正方形的面积,并写成一个等式;(2)运用(1)中的等式,解决以下问题:①已知,,求的值;②已知,,求的值.22.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?23.(8分)欧几里得是古希腊著名数学家、欧氏几何学开创者.下面问题是欧几里得勾股定理证法的一片段,同学们,让我们一起来走进欧几里得的数学王国吧!已知:在Rt△ABC,∠A=90°,分别以AB、AC、BC为边向外作正方形,如图,连接AD、CF,过点A作AL⊥DE分别交BC、DE于点K、L.(1)求证:△ABD≌△FBC(2)求证:正方形ABFG的面积等于长方形BDLK的面积,即:24.(8分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.25.(10分)先化简,再求值,其中x=1.26.(10分)如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,x•y=,则x﹣y=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据四个选项图像可以判断过原点且k<0,,-k>0即可判断.【题目详解】解:A.与图像增减相反,得到k<0,所以与y轴交点大于0故错误;B.与图像增减相反,得到k<0,所以与y轴交点大于0故正确;C.与图像增减相反,为递增一次函数且不过原点,故错误;D.过原点,而图中两条直线都不过原点,故错误.故选B【题目点拨】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.2、A【分析】根据全等三角形的判定定理分析即可.【题目详解】解:∵∴∠AOB=∠COD=90°在Rt△AOB和Rt△COD中∴(HL)故选A.【题目点拨】此题考查的是全等三角形的判定定理,掌握用HL判定两个三角形全等是解决此题的关键.3、A【题目详解】要使函数有意义,则所以,故选A.考点:函数自变量的取值范围.4、C【解题分析】利用等腰三角形的性质和基本作图得到,则平分,利用和三角形内角和计算出,从而得到的度数.【题目详解】由作法得,∵,∴平分,,∵,∴.故选:C.【题目点拨】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.5、C【分析】根据平移的性质计算,即可得到答案.【题目详解】线段CD是由线段AB平移得到的,点A(3,-1)的对应点C的坐标是(-2,5)即C的坐标是(3-5,-1+6)∴点B(0,4)的对应点D的坐标是(0-5,4+6),即(-5,10)故选:C.【题目点拨】本题考查了平移的知识,解题的关键是熟练掌握平移的性质,从而完成求解.6、C【分析】①由函数图象可以求出妈妈骑车的速度是210米/分;
②设妈妈到家后追上小华的时间为x分钟,就可以求出小华家到学校的距离;
③由②结论就可以求出小华到校的时间;
④由③的结论就可以求出相遇的时间.【题目详解】解:①由题意,得
妈妈骑车的速度为:2100÷10=210米/分;
②设妈妈到家后追上小华的时间为x分钟,由题意,得
210x=10(20+x),
解得:x=1.
∴小华家到学校的距离是:210×1=1210米.
③小华今天早晨上学从家到学校的时间为1210÷10=21分钟,
④由③可知在7点21分时妈妈与小华在学校相遇.
∴正确的有:①②③共3个.
故选:C.【题目点拨】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.7、D【解题分析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.【题目详解】∵CD是直角△ABC斜边AB上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,同理得:∠B=∠ACD,∴相等的角一共有5对,故选:D.【题目点拨】本题考查了直角三角形的性质,熟练掌握同角的余角相等是解题的关键.8、C【解题分析】∵把分式中的x、y同时扩大为原来的2倍后变为:==.∴是的.故选C.9、C【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答即可.【题目详解】因为第四象限内的点横坐标为正,纵坐标为负,各选项只有C符合条件,故选:C.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、A【分析】根据分式的定义逐个判断即可.形如(A、B是整式,B中含有字母)的式子叫做分式.【题目详解】解:分式有:,,﹣,,,共5个,故选:A.【题目点拨】本题考查的知识点是分式的定义,熟记定义是解此题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据三角形的面积公式即可得到AD=1,由EF垂直平分AB,得到点A,B关于EF对称,于是得到AD的长度=PB+PD的最小值,即可得到结论.【题目详解】解:∵AB=AC,BC=5,S△ABC=15,AD⊥BC于点D,∴AD=1,∵EF垂直平分AB,∴点P到A,B两点的距离相等,∴AD的长度=PB+PD的最小值,即PB+PD的最小值为1,故答案为:1.【题目点拨】本题考查了轴对称——最短路线问题,线段的垂直平分线的性质,等腰三角形的性质的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.12、0【分析】根据数轴所示,a<0,b>0,b-a>0,依据开方运算的性质,即可求解.【题目详解】解:由图可知:a<0,b>0,b-a>0,∴故填:0【题目点拨】本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a>0,即|b-a|=b-a.13、.【分析】由倒数的定义可得的倒数是,然后利用分母有理化的知识求解即可求得答案.【题目详解】∵.∴的倒数是:.故答案为:.【题目点拨】此题考查了分母有理化的知识与倒数的定义.此题比较简单,注意二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.14、【分析】根据完全平方公式:,即可求出m的值【题目详解】解:∵是完全平方式,∴∴故答案为:【题目点拨】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.15、30【分析】利用等腰三角形的性质可得出ABC的度数,再根据垂直平分线定理得出AD=BD,,继而可得出答案.【题目详解】解:DE垂直平分AB故答案为:30.【题目点拨】本题考查的知识点是等腰三角形的性质以及垂直平分线的性质,掌握以上知识点是解此题的关键.16、1.【分析】分式的值为2的条件是:(1)分子=2;(1)分母≠2.两个条件需同时具备,缺一不可.【题目详解】解:若代数式的值为零,则(x﹣1)=2或(x﹣1)=2,即x=1或1,∵|x|﹣1≠2,x≠1,∴x的取值应为1,故代数式的值为零,则x的取值应为1.【题目点拨】由于该类型的题易忽略分母不为2这个条件,所以常以这个知识点来命题.17、2.5×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.0000025=2.5×10-1,
故答案为2.5×10-1.【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、BE【解题分析】∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAC-∠BAD=∠DAE-∠BAD,∴∠DAC=∠BAE,∵在△CAD和△BAE中,,∴△CAD≌△BAE,∴CD=BE.故答案为BE.点睛:本题关键在于掌握三角形全等的判定方法.三、解答题(共66分)19、(1)猜想:.证明见解析;(2)猜想:.证明见解析.【分析】(1)应用AAS证明△DAB≌△ECA,则有AD=CE,BD=AE,问题可解(2)AAS证明△DAB≌△ECA则有AD=CE,BD=AE,问题可解.【题目详解】(1)猜想:.证明:由已知条件可知:,,在和中,,,.,.(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图2的位置,并使,.(2)猜想:.证明:由已知条件可知:,,.在和中,,,.,.【题目点拨】本题考查全等三角形的性质与AAS判定三角形全等,解答关键是根据题意找到需要证明的全等三角形.20、(1)计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)需调配36座客车3辆,22座客车5辆.【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量-2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【题目详解】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,
依题意,得:,
解得:.
答:计划调配36座新能源客车6辆,该大学共有218名志愿者.
(2)设需调配36座客车m辆,22座客车n辆,
依题意,得:36m+22n=218,
∴n=.
又∵m,n均为正整数,
∴.
答:需调配36座客车3辆,22座客车5辆.【题目点拨】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.21、(1)正方形的面积可表示为:或;等式:;(2)①;②103.【分析】(1)用正方形的面积公式直接求出正方形的面积;利用四个矩形的面积之和求出正方形的面积,即可得到一个等式;(2)①根据(1)中的等式进行直接求解即可;②令a=x-y,对等式进行变形后,利用(1)中的等式进行求解.【题目详解】(1)正方形ABCD的面积可表示为:或等式:(2)①∵,,由(1)得:∴∴②令a=x-y,则a+z=11,az=9∴原式可变形为:【题目点拨】本题考查的是完全平方公式的几何意义,能根据(1)中求出的等式对完全平方公式进行变形是关键.22、规定日期是6天.【解题分析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【题目详解】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得
解方程可得x=6,
经检验x=6是分式方程的解.
答:规定日期是6天.23、(1)见解析;(2)见解析【分析】(1)根据正方形的性质可得AB=FB,BD=BC,∠FBA=∠CBD=90°,从而证出∠FBC=∠ABD,然后利用SAS即可证出结论;(2)根据平行线之间的距离处处相等可得,然后根据全等三角形的性质可得,从而证出结论.【题目详解】(1)证明:∵四边形ABFG、四边形BDEC是正方形∴AB=FB,BD=BC,∠FBA=∠CBD=90°∴∠FBA+∠ABC=∠CBD+∠ABC即∠FBC=∠ABD在△ABD和△FBC中∴△ABD≌△FBC(SAS)(2)∵GC∥FB,AL∥BD∴,∵△ABD≌△FBC∴∴【题目点拨】此题考查的是正方形的性质、全等三角形的判定及性质和平行线公理,掌握正方形的性质、全等三角形的判定及性质和平行线之间的距离处处相等是解决此题的关键.24、14【解题分析】根据勾股定理得AB=7,由旋转性质可得∠A′BA=90°,A′B=AB=7.继而得出AA′=14.【题目详解】∵点A(2,0),点B(0,3),∴OA=2,OB=3.在Rt△ABO中,由勾股定理得AB=7.根据题意,△A′BO′是△ABO绕点B逆时针旋转90°得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=7,∴AA′=A'B2+A【题目点拨】本题主要考查旋转的性质及勾股定理,熟练掌握旋转的性质是解题的关键.25、;.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国城市商业地产市场分析汇报
- 《基于CVAE-CGAN模型的3D手势估计方法研究》
- 托班冬至特色课程设计
- 五年级下册英语教学计划
- 2024-2030年中国汽车油箱行业发展趋势及项目投资可行性分析报告
- 2024-2030年中国汽车前档安全玻璃产业未来发展趋势及投资策略分析报告
- 2024-2030年中国永磁电机行业发展状况投资策略研究报告
- 2024-2030年中国水果罐头市场竞争态势及运营效益预测报告
- 2024-2030年中国水产苗种培育市场运营状况及投资战略研究报告
- 2024-2030年中国氨甲环酸行业发展态势及投资价值评估报告
- 教师如何处理学生的消极情绪
- 设备安全调试维修作业安全培训
- 苏轼的坎坷一生(被贬路线)课件
- 2024年心理咨询师题库及参考答案(考试直接用)
- 天津大学2022年839物理化学考研真题(含答案)
- 物理化学习题库及答案
- 起重吊装作业安全检查范文
- 领导力:如何在组织中成就卓越
- 小学校本课程《跳绳》教材
- 《Baby》Justin-Bieber版歌词完整版打印下载打印
- 公司业务拓展方案
评论
0/150
提交评论