




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MOSFETDivisionTechnicalTraining7thApril2005
MOSFETBasicInformationMainElectricalParametersProduction(Assy&Testing)FlowChartDevelopmentandCharacterizationActivitiesDatasheetReliability..AGENDA
MOSFETTechnicalTraining
DeviceStructure&Characteristics
Vertically
oriented
fourlayerstructure(n+
pn-n+)Highinputimpedance-
voltage
controlled
device-easytodrive
Unipolar
device-majoritycarrier
device-fastswitching
speed
WideSOAN++PP+N-N+MetalDielettricPolysiliconGateOxideZoomonMOSFETStructureDGSSGDMOSPINindividuationontheStructureN-P+N+SGDMOSParassiticElements:BodyDiodeN-P+DGSN-P+N+N-P+N+SGDGDSMOSParassiticElements:BJTN-P+N+SGDMOSParassiticElements:C,RpDCRpSGN-P+N+SGDMOSParassiticElements:JFETGDSCRpMOSFETBasicOperationGS++-VGS
<VThVDS>0ID
=00102030010203040ID[A]102030040VDS[V]102030MOSFETBasicOperation+GSD++-VGS
VThVDS>0ID
00102030010203040ID[A]102030040VDS[V]102030N+NPinversionlayerMOSFETBasicOperationGSD++-VGS>VThVDS>0ID>00102030010203040ID[A]102030040VDS[V]102030IncreasingVGOnstateresistanceRONMOSFETBasicOperationBVDSS[V]10100100010000RONAREA[mWcm2]1001100.11000MOSFET’sCapacitancesDGSCdsCgsCgdCiss=CGD+CGS Coss=CDS+CGDCrss=CGD
InputCapacitanceOutputCapacitanceMillerCapacitanceNote:Normallywedon’tmeasuretheseparametersinproduction.WecharacterizeandguaranteesbyF/Eprocess.LowBreakdownvalues: 12V–1000V
LowRdsonvalues: Till1.5mΩ
Highcurrent: Till250A/160A
LowDrivingGateVoltage: Till2.5V..1.8V
MainMOSFETFeaturesP/NNomenclatureforMOSFETDevicesSTP70NF03LâC=TSSOP8T=SOT23-6LN=SOT-223L=PowerFLATSJ=PowerSO-8SR=PowerSO-8ReverseS=SO-8D…T4=DPAK(Tape&Reel)B…T4=D2PAK(Tape&Reel)V=PowerSO-10Q=TO-92D…-1=IPAKB…-1=I2PAKP=TO-220P…FP=TO-220FPF=TO-220FPfornewproductsW=TO-247Y=Max247E=ISOTOPPackageTYPEIndicativeCurrentRangeChannelPolarityE=EHD1(STripFET1stgeneration)F=EHD2(STripFET2ndgeneration)H
=EHD3(STripFET
3rdgeneration)FS=EHD2+SchottkyDiodeS=PowerMESHMediumVoltB=PowerMESHIC=PowerMESHIIC…Z=PowerMESHIIIK…Z=SuperMESHM=MDmeshM…N=MDmeshIISpecialFeaturesN=N-ChannelP=P-ChannelDNorDP=Dual
N-ChorDual
P-ChC=Complementray
Pairwiththeexceptionof:55Vand75VTSSOP8,SOT23-6L,SO-8HighVoltageMOSFETSuperMesh-New“NK-Z”SeriesHighvolumemarkets(costcompetitiveness)EvenbetterRdson*QgandverygoodruggednessMDmesh-“NM”SeriesHigh-EndapplicationsEvolvingas“future”highvoltageleadingtechnologyMainFocusPowerMESHII–“NC”SeriesCompetitivestandardMOSFETsCosteffectiveHighvolumeproductionPowerMESHIII–“NC-Z”SeriesVeryhighvoltagemarketZENERDiode:addedvalueatnocostsLowVoltageMOSFETTechnologyFromcelltostrip(EHDtechnology–1996)Stripwidth(2.6umEHD1
1.2umEHD20.6umEHD3)CellsdensityequivalentincreaseVerylowgatecharge(newSP3technology)MacropackagesoptimizationforverylowRdson/RthMicropackagesoptimizationforverylowRdson/RthMainapplicationstofocusSMPS:ACtoDC,PFC,Adapters
PowerManagement(includingthoseforelectronicgames)
Lighting:CFL,HFBallast,PFC
HighfrequencyDCtoDCConverterforcomputer
BatteryChargersAutomotiveMOSFETBasicInformationMainElectricalParametersProduction(Assy&Testing)FlowChartDevelopmentandCharacterizationActivitiesDatasheetReliability..AGENDA
MOSFETTechnicalTraining
MainElectricalParametersBVdss BreakdownVoltageVGS(th) ThresholdVoltageIgss GateSourceleakageCurrentIdss DrainSourceleakageCurrentVDSon DrainSourceOnVoltageRDSon DrainSourceOnResistenceVsd ReverseDiodeVoltageDVSD DeltaVsdUIS UnclampedInductiveSwitchingUID UnclampedInductiveDischargeDrain-SourceBreakdownVoltage: BVDSS[V]
Measurementconditions: Vgs=0[V],Id=250[mA]/Id=1[mA]
Note:
ThisparameterisafunctionoftheresistivityandthicknessoftheN-Epilayer.ThevalueisdirectlyproportionaltoJunctionTemperatureasshownafter.Drain-SourceBreakdownVoltage[BVdss]DGSVdsIdId2=1mAId1=250mA12BV2>BV1IdsGateThresholdVoltage:
VGS(th)[V]
Measurementconditions:
Vgd=0[V],Id=250[mA]/Id=1[mA]
Note:
Thisparametermeasurestheminimumgatevoltagethatinitiatesdraincurrentflow.Thetemperaturecoefficientinthiscaseisnegativeasshown.ThresholdVoltage[Vgs(th)]DGSIdStandardLogic (2V–4V)
Oxidethickness =470Angs/HighBodydoping
Drivingdownto Vgs=10V Rdson@10V&Inom/2
Examples: TDxx/EDxx/3DxxlinesLogicLevel (1V–2.5V)
Oxidethickness =470Angs/LowBodydoping
Drivingdownto Vgs=5V Rdson@5V&Inom/2
Examples:
TLxx/ELxx/3LxxlinesLogicLevel (1V–2V)Oxidethickness =350Angs/LowBodydopingDrivingdownto Vgs=4.5VRdson@4.5V&Inom/2Examples:
FLxx/T3xx/E3xx/33xx/43xxlinesSuperLogicLevel (>0.6V)
Oxidethickness =200Ang/LowBodydopingDrivingdownto
Vgs=2.5V Rdson@2.5V&Inom/2Examples:
TVxx/PVxx/3VxxVgs(th)forLVMOSFETsGateSourceLeakageCurrent:
IGSS[nA]
Measurementconditions:
Vgs=[seetable] Vds=0[V]
Gate-SourceLeakageCurrent[IGSS]DGSNote:
ThisparametermeasuresleakagecurrentflowingtroughoxidewhenthereisaVgsapplied.Thetypicalreadvalueis<100nAOx.Thic.DevicesVgs[V]200AngsNH10to12350AngsNE/NF/NH15to18470AngsNE/NF/NS/PP/SP20to22620AngsNS22to24>850AngsNB/NC/NK/NM30Drain-SourceLeakageCurrent: IDSS[μA]
Measurementconditions: Vgs=0[V],Vds=Nom.BVdss[V]
Note:
ThisparametermeasurestheleakagecurrentflowinginthebodydiodewhenthedeviceisnotturnedON(Vgs=0[V]).DrainSourceLeakageCurrent[IDSS]DGSVdsIdNom.BVdssIdssDrain-SourceONVoltage: VDSON[V]/RDSON[Ω]
Measurementconditions: Vgs=10V/5.0V/4.5V/2.5V Id=Id(nominal)/2
Note:
>>IncreasingtheVgsdrivingtheMOSFETtheRdsondecreases.(Vgs2>Vgs1=>Rdson2<Rdson1)>>IncreasingVgsoveravaluedoesnothaveanygoodimprovementversusRdson.>>WiththesameVdsontheMOSFETcandrivedifferentcurrentvalueapplyingdiffentVgs.(Blueline)DrainSourceOnVoltage[V®DSON]Id(nominal)/2DGS12Idon1Idon2Vgs1Vgs2Vgs3DrainSourceOnVoltage[V®DSON]
-behaviourvsInom/Temp-
RDS(on)=VDS(on)/Id(on)Rds(on)increaseswiththecurrentandalsowiththetemperatureDrain-SourceonResistance:RDS(on)RDS(on)=Rsource+Rch+RA+RJ+RD+Rsub+Rwcml
Rsource=Sourcediffusionresistance Rch=Channelresistance RA=Accumulationresistance
RJ=JFETcomponentresistanceofthe regionbetweentheP-bodies.
RD=Driftregionresistance
Rsub=
Substrateresistance
Rwcml=Sumofbondwireresistance,thecontactresistancebetweenthesourceand drainmetallizzationandthesilicon,leadframecontribution.RDS(on)increaseswiththetemperature.DrainSourceOnVoltage[V®DSON]
-components-RDS(on)=VDS(on)/Id(on)SourceleadSourcemetalRC(Wire/Front)R(Wire)RC(Wire/Frame)SiliconDrainDrainSourceOnVoltage[V®DSON]
-Packagecontribution-RC(Wire/Front)=0.9
mW
(AlwiresonAlfrontmetal)R(wire)=1.2/2.8mW
(Alwires,15/10mils
diameter,5mmlenght)RC(Wire/Frame)=1.2
mW
(AlwiresonCuorNi
frame)
Epitaxy
Packaging
MetallizationSource
JfetChannel
SubstrateVoltageRating55V100V500V30VRdsonComponentsDrainSourceOnVoltage[V®DSON]
-RdsonvsVoltageRatingdevices-Drain-SourceDiode
fowardVoltage: VSD
Measurementconditions: Vgs=0[V],Id=InominaleNote:
ThevalueisdirectlyproportionaltoJunctionTemperature.ReverseDiodeVoltage[VSD]DGSIsdVsdIsdInom/2Vf(diode)IMPROVEMENTSPackageimprovementLowerdiethickness(410µm280µm220µm200µm)THERMALCHARACTERISTICSPTOT=DT/RTHJ-C=(Tjmax-Tc)/RTHJ-CRththermalperformance(diesize,package)I=(TJMAX-TC)/RON(@TJMAX)/RTHJ-CPTOT=RON(@Tjmax)*I²PTOT=(Tjmax-TC)/RTHJ-CPOWERHIGHCURRENTLIMITSWirebondinglimitationIMAX=Nr.of.Wires*IMAX(Wire)Dim.Inom.I(Burnout)1030A35A1540A70AIMPROVEMENTSLargeT-Posttobondupto4x15milswires(Imax=160A)Clipattachtohavethemaximumofareaforcurrent.WIRESHIGHCURRENTLIMITSRthj-cisfunctionofdiesize.
BiggeristhedieLowerisRthj-cThermalresistance1/3Parameterwhichindicateshow"easily"theheatflowsbetweentwopoints.SmallRTHimpliesthattheheatistransferredfromthetwopointswithlittletemperaturedifference,whilelargeRTHrequiresagreatertemperaturedifference.InelectronicdevicesthetwomostimportanttemperaturesaretheambienttemperatureTAandthetemperaturereachedbythejunctionTJ.TheRTHJ-A(device)dependsbyframedimensionandframematerial.TheRTHJ-A(module)dependsbythedevice,insulation,mountingmethod,heat-sinksizeandcoolingmethod(forcedair,radiation,....).RTHB-A=(TB-TA)/PDThermalchainexistsfromthesilicontotheambientthroughthedieattach,theframe,thecontactandtheexternaldissipator
RTHj-a=RTHj-c+RTHc-s+RTHs-aThermalmodelfortransienttakesintoaccountalsothethermalcapacitances.Thermalresistance2/3Thermalresistance3/3PowerpulseTemperatureincreasePowerMOS
DT=RTHxPowerThepowerlossofthedevice
turns
into
heatandincreasesthejunctiontemperature.DuringtheProductCharacterizationisperformedtheRthdistributionstofixthevaluetoinsertinofficialdocument.InthesametimetheDVSDtestconditionsandlimitsarefixedtoscreeneventualassy(dieattach)problempotentiallyincreasingRth(preformthickness/voids)TheDVSDtestisperformedtoguaranteetheProductperformancesintermsof:PowerDissipationcapability(Rth/Zth)andThermaldissipation.TheTestConditionsandvaluesarenotdirectlylinkedwiththeRthdistributionsconsideringthedifferencesbetweenthetwotestperformed.RthParameterCharacterizationOnGOODPartsRthmaxforDatasheetDVSDCharacterizationOnGOODPartsToFIX:ConditionsandLimitsConditionsandLimitsSamePartsDieAttachVerification[DVSD]DieAttachVerification[DVSD]Vf1
atISD
is
readApowepulseis
applied
atprefixedpulsetimeWaitforadelayVf2
is
readinthesameconditionthan1Vf2-Vf2arecomputedandcompared
withtestlimitVf1PowerpulseTcalTesttime(Pt)Tdelay(Dt)TcalVf2Example:
DVf/°C=2.1mV/°C(Law).
IfDVf=130mVthenDT=62°CIncaseofdieattachproblem,DVf=willbemuchhigherDSVfUnclampedInductiveSwitching[UIS]E=1/2*L*I2*(V(BR)eff/(V(BR)eff-VDD))E=1/2*V(br)eff*Io*tavVgateTurnOff
Mode1HighCurrentassociatedtoelevateddv/dtofVDScausingactivationofparasiticbipolartransistorMode2ThermaldissipationwithTjexceedingpermissibleTjmax(175°CLowVoltage/150°CMedium/HighVoltage)UnclampedInductiveSwitching[UIS]
-FailureModesinAvanlanche-Failureoccursatturn-off(whenVdsreachesbreakdown)FailuremechanismrelatedtoSiliconLayoutandProcessFailuredependentondVDS/dt,thereforeonRgoffFailurenotdependentonLEasnotsignificant(fewmJ)
ParasiticBJTTurn-on(Mode1)ThecurrentstartsflowingintothePregioncausingavoltagedropacrossRpandforwardbiasingtheBEjunctionofparasiticBJT;VBEondecreasingwithtemperatureinconjunctionwiththegain
oftheBJTwillleadittobeturned-on,withveryhighcurrentcrowdingandconsequentlocaltemperatureincreaseuptotherunawayandthedevicefailureFailureoccursduringinductivedischargewithDUTinavalancheanditsTjincreasing(startingfrom25°C)Tjcriticalis230°Cto330°C(dependentonP/N)EasisafunctionofArea/Power/DeltaTjEas=K*Area1.6*DeltaTj/PDUTruggednessischaracterizedduringProductDevelopmentDependentonSiliconandPackagingGuaranteedEasisrelatedtoTj=Tjmax=175°CCriticalEas“controlled”byTesting(Rdson/Vf/DeltaVsd)TjexceedingTjmax(Mode2)U.I.S.WAVEFORMSContinuuslinerepresentsanofailingdeviceduringUISThedottedoneisafailureforEnergy(EAS)TestCircuitforStandardU.I.S.D.U.T.LoadVddVggRgONRgOFF
theDUTisONandafterVgsturn-off,duetoadelayintheGatecapacitancesdischarge,theChannelsarenotimmediatelyclosed,soIdsisstillflowingforawhileasbeforeandwithoutdiscontinuity,andthenstilldistributedamongallthetransistorstrips.RgONRgOFFVggVddLoadD.U.T.TestCircuitforU.I.Discharge
theDUTisOFFwithVgs=0,andthenthecurrentdischargeofthecoilissuddenlycrowdedtoasmallareaofthechipwheretheparasiticBJTisturned-on.MOSFETBasicInformationMainElectricalParametersProduction(Assy&Testing)FlowChartDevelopmentandCharacterizationActivitiesDatasheetReliability..AGENDA
MOSFETTechnicalTraining
PRODUCTIONFLOWCHARTShipmenttoBackEnd(Casa/Shz/Subcon)Assemble(WS/DA/WB/MOLD/…)ShipmenttostoreWaferDiffusionEPIGrowth(CT6/AMK5/6)EWSFinalTestingASSEMBLEFLOWCHART
BEPlants(Casablanca/Shenzhen)SawingDieattachWirebondingMoldingASSEMBLEFLOWCHART
BEPlants(Casablanca/Shenzhen)DeflashingCuringPack.CroppingTO220TinDippingTinPlatingCroppingDPAK,D2PAKTESTTESTINGFLOWCHART
ParametersTestedat100%inproductionLV
LaserMarkingHVDSFBLVLOADTestsIGSSIDSSBVDSSTestsVGSthVDSONVSDTestDVSDTestU.I.S.BIN6BIN5BIN4BIN3BIN2BIN1OUTPUTTestsIGSSIDSSBVDSSTestsVGSthVDSONVSDHVBINTESTBINCATEGORY12GOOD24PARAM.REJECT35RETEST46MARKING57DVSD,UIS,M.I.68OTHERSMOSFETBasicInformationMainElectricalParametersProduction(Assy&Testing)FlowChartDevelopmentandCharacterizationActivitiesDatasheetReliability..AGENDA
MOSFETTechnicalTraining
TargetdefinitionwithMarketingandDesign(diffusionandassyapproval) TargetdatasheetEWS/Assy/T&FspecificationsFirstdiffusionlotEWSevaluationWafersshipmenttoplantsand/orsubcontractors(engineeringtrialrequests)Assy&TestingYield+parametricevaluationofplantdataStaticcharacterization(vstemperature)ontheassembledpartsPreliminarydatasheetDynamiccharacterization&ReliabilityThermalcharacterization(fornewpackages/diesizes)Development&CharacterizationReportandcompletedatasheetIssueDevelopment&CharacterizationActivity
MOSFETBasicInformationMainElectricalParametersProduction(Assy&Testing)FlowChartDevelopmentandCharacterizationActivitiesDatasheetReliability..AGENDA
MOSFETTechnicalTraining
ExceedingVgsmayresultinpermanentdevicedegradationduetooxidebreakdownanddielectricrupture.Therealoxidebreakdowncapabilityishigherthanthisvalue,andisrelatedtotheoxidethickness;butthisvalue,withareasonableguardband,isthe100%TESTED&warrantedone
Tjmustbealwayslowerthan150ºCReflectsaminimumdeviceservicelifetime.OperationatconditionsthatguaranteeajunctiontemperaturelessthanTjmaxmayenhancelongtermoperatinglife.
Ptot=dT/Rthjc=(150-25)/Rthjcderating=1/RthjcThemajorityofreliabilitytestsaredoneatmaximumjunctiontemperature,especiallytheHTRB(HighTemperatureReversedBias)andHTFB(HighTemperatureForwardBias).Thesetestresultsareusedasinputinformationforcalculationofaccelerationfactorsindifferentreliabilitymodels.Inordertoachievehighforecastedreliabilitythemaximumoperatingtemperatureshouldbelowerthanthemaximumone.Forexample,bytheoreticalmodels,reducingthejunctiontemperatureby30°CwillimprovetheMTBF(MeanTimeBetweenFailure)oftheMOSFETbyanorderofmagnitude.Ptot=Ron(@Tjmax)*I²Ptot=(Tjmax-Tc)/RTHj-cI=(Tjmax-Tc)/Ron(@Tjmax)/RthjcLimitedalsobywiresize:toavoidanyfuseeffectLimitedbyPtot&RdsonMaximumdv/dtcapabilityduringdiodereverserecovery(dynamicdv/dt)Tobedistinguishedtwokindofdv/dt(staticanddynamic)Iftheparasiticbipolartransistoristurnedon,thebreakdownvoltageofthedeviceisreducedfromBVCBOtoBVCEOwhichis50~60[%]ofBVCBO.IftheapplieddrainvoltageislargerthanBVCEO,thedevicewillbebroughtintotheavalanchebreakdown,andifthedraincurrentcannotbelimitedexternally,thedevicecouldbedestroyedbythesecondbreakdownofparasitic
bipolar.Duetothefalseturn-on,thedevicefallsintothecurrentconductionstate,andinseverecases,highpowerdissipationdevelopsinthedeviceandcreatesdestructivefailure.Staticdv/dta)Falseturnonb)ParasitictransistorturnonThevalueofdi/dtanddv/dtbecomeslargerasRgisreduced.Dioderecoverydv/dtThedeviceisdestroyedbythesimultaneousstressessuchashighdraincurrent,highdrainsourcevoltageandthedisplacementcurrentoftheparasiticcapacitance.HighestStresspointSTinsulatedpackagesaretested100%toguaranteethisvalue.Thermalchainexistsfromthesilicontotheambientthroughthedieattach,theframe,thecontactandtheexternaldissipator.RTHj-a=RTHj-c+RTHc-s+RTHs-aThermalmodelfortransienttakesintoaccountthermalcapacitancesThermalresistanceRthjc=1/0.32=3.1K/WV=Ron(@Tj)*IK=0.1Zth=kRthVI=(Tj-Tc)/ZthK=0.04K=0.01K=1AllowedbutnotreachableregionIar,definedasthemaximumcurrentthatcanflowthroughthedeviceduringtheavalancheoperationswithoutanybipolarlatchingphenomenon.EAS(EnergyduringAvalancheforSinglePulse)isdefinedasthemaximumenergythatcanbedissipatedinthedeviceduringasingleavalancheoperation,attheIarandatthestartingjunctiontemperatureof25°C,tobringthejunctiontemperatureuptothemaximumonestatedintheabsolutemaximumratings.DSGTracerwaveformAsjunctiontemperatureincreases,BValsoincreaseslinearly,DSGIDSSissensitivetothetemperatureandithaspositivetemperaturecoefficient.DSGDSGThresholdvoltageVGS(th)istheminimumgatevoltagethatinitiatesdraincurrentflow.VGS(th)hasanegativetemperaturecoefficientDSGRDS(on)hasapositivetemperaturecoefficientRDS(on)isnotconstantvsIdDSGGfs=didsdvgsVds=constTGDSCGSCDSCGDCiss=CGD+CGSCoss=CDS+CGDCrss=CGD
TemperaturevariationshaveverylittleeffectResistiveloadswitchingVDVG=0ID=0IDS[A]VDS[V]500432100143256Resistiveloadswitching1VDVG=0ID~0VG=VTh500432100143256ChargingtheCisstoVth.Noevidentdraincurrentflows;VdsremainsessentiallyatVddVDS[V]IDS[A]Resistiveloadswitching12VDVG=0ID=0VT500432100143256ContinuestheCissCharging.Draincurrentstartstoflow;VdsremainsessentiallyatVddVDS[V]IDS[A]Resistiveloadswitching12VDVG=0ID=0VG=VGmVT500432100143256ContinuestheCissCharging.Draincurrentflowstothemaximum;VdsremainsessentiallyatVddVDS[V]IDS[A]ResistiveloadswitchingVG=0124VDID=0VG=VGmVT500432100143256CgdisChargingandCissincreasesmantainingVgflat.IdconstantVdsapproachestoVdson
VDS[V]IDS[A]Resistiveloadswitching124VDVG=0ID=0VT500432100143256MOSFETinohmicregion.VgincreasestoappliedvoltagecharginginputcapacitancesVDS[V]IDS[A]ResistiveloadswitchingVG=0124VDID=0VT500432100143256VDS[V]IDS[A]ResistiveloadswitchingVG=0124VDID=0VT500432100143256VDS[V]IDS[A]Resistiveloadswitching10VItisusedtodeterminetheamountofcharge,definedasQg,requiredtobringtheCissfrom0Vto10VDSGISDIrrm
Qrr~0.5
trr*IrrmMOSFETBasicInformationMainElectricalParametersProduction(Assy&Testing)FlowChartDevelopmentandCharacterizationActivitiesDatasheetReliability..AGENDA
MOSFETTechnicalTraining
ReliabilityTestsDieorientedtestsHightemperaturereversebias(HTRB)Hightemperature
forward
bias(HTFB)Hightemperature
storage(HTS)PackageorientedtestsThermalfatigueTemperature
humidity
bias(THB)PressurePotThermalcyclesEnvironmental
sequenceReliabilitytestshavetobepassed
beforenewproductsareapprovedThistestisperformedinordertodemonstratethereliabilityofdevicessubjectedtoanelevatedtemperatureandsimultaneouslyreversebiased.Detectablefailuremechanismarebreakdowndegradation,leakageincrease.SensitiveparametersareBvdss,Idss,IgssTestconditions:Vbias=0.8VmaxT=150°Ccheckpoint168hr,500hr,1000hrR=1KOhm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025购车合同样本范本
- 2025年拒绝政府采购合同的法律责任分析
- 房地产买卖补充合同范本
- 车库转让协议
- 2025《中央商务区B区基础设施建设与管理承包合同》
- 产品购销合同范本
- 2025版合同:国内劳务合同
- 2025城区商场餐饮服务承包合同
- 广州南沙就业协议书
- 肇庆学院《岩土工程设计》2023-2024学年第一学期期末试卷
- 2024上海市招聘社区工作者考试题及参考答案
- 物业服务集团在管项目人员配置标准
- 机器设备评估常用数据及参数(最新)
- 叉车日常维护保养检查记录表
- 东风汽车特约店培训资料-WDMS维修系统培训管理(PPT 131页)
- Q∕GDW 12070-2020 配电网工程标准化设计图元规范
- 汽车半悬挂系统建模与分析(现代控制理论大作业)
- 小学语文人教课标版(部编)三年级下册习作:我做了一项小实验
- 毕业设计论文土木工程专业五层单身宿舍楼框架结构设计
- 立式水轮发电机轴线分析及处理
- 蹲踞式起跑PPT
评论
0/150
提交评论