2024届山东省济宁市微山县高一上数学期末学业水平测试试题含解析_第1页
2024届山东省济宁市微山县高一上数学期末学业水平测试试题含解析_第2页
2024届山东省济宁市微山县高一上数学期末学业水平测试试题含解析_第3页
2024届山东省济宁市微山县高一上数学期末学业水平测试试题含解析_第4页
2024届山东省济宁市微山县高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济宁市微山县高一上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.C. D.2.2018年,晓文同学参加工作月工资为7000元,各种用途占比统计如下面的条形图.后来晓文同学加强了体育锻炼,目前月工资的各种用途占比统计如下面的折线图.已知目前的月就医费比刚参加工作时少200元,则目前晓文同学的月工资为A.7000 B.7500C.8500 D.95003.若a,b是实数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.已知集合,,若,则的子集个数为A.14 B.15C.16 D.325.函数与g(x)=-x+a的图象大致是A. B.C. D.6.下列选项正确的是()A. B.C. D.7.若,,三点共线,则()A. B.C. D.8.函数的最小正周期为,若其图象向左平移个单位后得到的函数为奇函数,则函数的图象()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称9.已知函数,若方程有五个不同的实数根,则实数的取值范围为()A. B.C. D.10.已知向量,,若与共线,则等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________12.在平面直角坐标系中,已知为坐标原点,,,,若动点,则的最大值为______.13.能说明命题“如果函数与的对应关系和值域都相同,那么函数和是同一函数”为假命题的一组函数可以是________________,________________14.已知函数是定义在R上的奇函数,且,若对任意的,当时,都有成立,则不等式的解集为_____15.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______16.已知函数,则不等式的解集为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,平行四边形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.(1)求证:BD⊥平面ECD;(2)求D点到面CEB的距离.18.为了做好新冠疫情防控工作,某学校要求全校各班级每天利用课间操时间对各班教室进行药熏消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量(单位:mg)随时间(单位:)的变化情况如图所示,在药物释放的过程中与成正比,药物释放完毕后,与的函数关系为(为常数),其图象经过,根据图中提供的信息,解决下面的问题.(1)求从药物释放开始,与的函数关系式;(2)据测定,当空气中每立方米的药物含量降低到mg以下时,才能保证对人身无害,若该校课间操时间为分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.19.已知,且,求的值20.已知函数是上的奇函数.(1)求的值;(2)比较与0的大小,并说明理由.21.已知为锐角,(1)求的值;(2)求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积2、C【解题分析】根据两次就医费关系列方程,解得结果.【题目详解】参加工作就医费为,设目前晓文同学的月工资为,则目前的就医费为,因此选C.【题目点拨】本题考查条形图以及折线图,考查基本分析判断与求解能力,属基础题.3、B【解题分析】由对数函数单调性即可得到二者之间的逻辑关系.【题目详解】由可得;但是时,不能得到.则是的必要不充分条件故选:B4、C【解题分析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C5、A【解题分析】因为直线是递减,所以可以排除选项,又因为函数单调递增时,,所以当时,,排除选项B,此时两函数的图象大致为选项,故选A.【方法点晴】本题通过对多个图象的选择考查函数的指数函数、一次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6、A【解题分析】根据指数函数的性质一一判断可得;【题目详解】解:对于A:在定义域上单调递减,所以,故A正确;对于B:在定义域上单调递增,所以,故B错误;对于C:因为,,所以,故C错误;对于D:因为,,即,所以,故D错误;故选:A7、A【解题分析】先求出,从而可得关于的方程,故可求的值.【题目详解】因为,,故,因为三点共线,故,故,故选:A.8、C【解题分析】求得,求出变换后的函数解析式,根据已知条件求出的值,然后利用代入检验法可判断各选项的正误.【题目详解】由题意可得,则,将函数的图象向左平移个单位后,得到函数的图象,由于函数为奇函数,则,所以,,,则,故,因为,,故函数的图象关于直线对称.故选:C.9、A【解题分析】由可得或,数形结合可方程只有解,则直线与曲线有个交点,结合图象可得出实数的取值范围.【题目详解】由可得或,当时,;当时,.作出函数、、图象如下图所示:由图可知,直线与曲线有个交点,即方程只有解,所以,方程有解,即直线与曲线有个交点,则.故选:A.10、A【解题分析】先求出,,再根据向量共线求解即可.【题目详解】由题得,因为与共线,.故选:A.【题目点拨】本题主要考查平面向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解.【题目详解】设大西洋鲑鱼静止时的耗氧量为,则,可得,将代入可得.故答案为:.12、【解题分析】设动点,由题意得动点轨迹方程为则由其几何意义得表示圆上的点到的距离,故点睛:本题主要考查了平面向量的线性运算及其运用,综合了圆上点与定点之间的距离最大值,先给出动点的轨迹方程,再表示出向量的坐标结果,依据其几何意义计算求得结果,本题方法不唯一,还可以直接计算含有三角函数的最值13、①.②.(答案不唯一);【解题分析】根据所学函数,取特例即可.【题目详解】根据所学过过的函数,可取,,函数的对应法则相同,值域都为,但函数定义域不同,是不同的函数,故命题为假.故答案为:;14、;【解题分析】令,则为偶函数,且,当时,为减函数所以当时,;当时,;因此当时,;当时,,即不等式的解集为点睛:利用函数性质解抽象函数不等式,实质是利用对应函数单调性,而对应函数需要构造.15、【解题分析】先求出时,,,然后解不等式,即可求解,得到答案【题目详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【题目点拨】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.16、【解题分析】分x小于等于0和x大于0两种情况根据分段函数分别得到f(x)的解析式,把得到的f(x)的解析式分别代入不等式得到两个一元二次不等式,分别求出各自的解集,求出两解集的并集即可得到原不等式的解集【题目详解】解:当x≤0时,f(x)=x+2,代入不等式得:x+2≥x2,即(x-2)(x+1)≤0,解得-1≤x≤2,所以原不等式的解集为[-1,0];当x>0时,f(x)=-x+2,代入不等式得:-x+2≥x2,即(x+2)(x-1)≤0,解得-2≤x≤1,所以原不等式的解集为[0,1],综上原不等式的解集为[-1,1].故答案为[-1,1]【题目点拨】此题考查了不等式的解法,考查了转化思想和分类讨论的思想,是一道基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)点到平面的距离为【解题分析】(1)根据题意选择,只需证明,根据线面垂直的判定定理,即可证明平面;(2)把点到面的距离,转化为三棱锥的高,利用等体积法,即可求解高试题解析:(1)证明:∵四边形为正方形∴又∵平面平面,平面平面=,∴平面∴又∵,∴平面(2)解:,,,又∵矩形中,DE=1∴,,∴过B做CE的垂线交CE与M,CM=∴的面积等于由得(1)平面∴点到平面的距离∴∴∴即点到平面的距离为.考点:直线与平面垂直的判定与证明;三棱锥的体积的应用.18、(1);(2)可以,理由见解析.【解题分析】(1)将图象上给定点的坐标代入对应的函数解析式计算作答.(2)利用(1)的结论结合题意,列出不等式求解作答.【小问1详解】依题意,当时,设,因函数的图象经过点A,即,解得,又当时,,解得,而图象过点,则,因此,所以与的函数关系式是.【小问2详解】由(1)知,因药物释放完毕后有,,则当空气中每立方米的药物含量降低到mg以下,有,解得:,因此至少需要36分钟后才能保证对人身无害,而课间操时间为分钟,所以学校可以选用这种药物用于教室消毒.【题目点拨】思路点睛:涉及实际应用问题,在理解题意的基础上,找出分散的数量关系,联想与题意有关的数学知识和方法,将实际问题转化、抽象为数学问题作答.19、【解题分析】利用同角三角函数的基本关系可求得的值,再结合诱导公式可求得所求代数式的值.【题目详解】∵,∴,∵,∴所以,∴【题目点拨】关键点睛:解决三角函数中的给值求值的问题时,关键在于找出待求的角与已知的角之间的关系.20、(1);(2)【解题分析】(1)由奇函数的性质列式求解;(2)先判断函数的单调性,然后求解,利用单调性与奇偶性即可判断出.【小问1详解】因为是上的奇函数,所以,得时,,满足为奇函数,所以.【小问2详解】设,则,因,所以,所以,即,所以函数在上为增函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论