版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省应县一中2024届数学高一上期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果关于x的不等式x2<ax+b的解集是{x|-1<x<3},那么ba等于()A.-9 B.9C.- D.-82.已知函数,且f(5a﹣2)>﹣f(a﹣2),则a的取值范围是()A.(0,+∞) B.(﹣∞,0)C. D.3.已知,,,则a,b,c的大小关系为()A. B.C. D.4.直线的倾斜角为()A. B.30°C.60° D.120°5.如图所示,在中,D、E分别为线段、上的两点,且,,,则的值为().A. B.C. D.6.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个7.下列四个函数,最小正周期是的是()A. B.C. D.8.已知三条不重合的直线,,,两个不重合的平面,,有下列四个命题:①若,,则;②若,,且,则;③若,,,,则;④若,,,,则.其中正确命题的个数为A. B.C. D.9.是所在平面上的一点,满足,若,则的面积为()A.2 B.3C.4 D.810.若直线与直线垂直,则()A.6 B.4C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号)①平均数;②标准差;③平均数且极差小于或等于2;④平均数且标准差;⑤众数等于1且极差小于或等于412.函数关于直线对称,设,则________.13.直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为____________14.定义域为R,值域为-∞,115.已知扇形的弧长为,半径为1,则扇形的面积为___________.16.已知函数的最大值为,且图像的两条相邻对称轴之间的距离为,求:(1)函数的解析式;(2)当,求函数的单调递减区间三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的函数,其中,且(1)试判断函数的奇偶性,并证明你的结论;(2)解关于的不等式18.已知集合,.(1)求;(2)求.19.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?20.已知,,且函数有奇偶性,求a,b的值21.已知函数,函数的最小正周期为,是函数的一条对称轴.(1)求函数的对称中心和单调区间;(2)若,求函数在的最大值和最小值,并写出对应的的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据一元二次不等式的解集,利用根与系致的关系求出的值
,再计的值.【题目详解】由不等式的解集是,所以是方程的两个实数根.则,所以所以故选:B2、D【解题分析】由定义可求函数的奇偶性,进而将所求不等式转化为f(5a﹣2)>f(﹣a+2),结合函数的单调性可得关于a的不等式,从而可求出a的取值范围.【题目详解】解:根据题意,函数,其定义域为R,又由f(﹣x)f(x),f(x)为奇函数,又,函数y=9x+1为增函数,则f(x)在R上单调递增;f(5a﹣2)>﹣f(a﹣2)⇒f(5a﹣2)>f(﹣a+2)⇒5a﹣2>﹣a+2,解可得,故选:D.【题目点拨】关键点睛:本题的关键是由奇偶性转化已知不等式,再求出函数单调性求出关于a的不等式.3、D【解题分析】与中间值1和2比较.【题目详解】,,,所以故选:D.【题目点拨】本题考查幂与对数的大小比较,在比较对数和幂的大小时,能化为同底数的化为同底数,再利用函数的单调性比较,否则可借助中间值比较,如0,1,2等等.4、C【解题分析】根据直线的斜率即可得倾斜角.【题目详解】因为直线的斜率为,所以直线的倾斜角为满足,即故选:C.5、C【解题分析】由向量的线性运算可得=+,可得,又A,M,D三点共线,则存在b∈R,使得,则可建立关于a,b的方程组,即可求得a值,从而可得λ,μ,进而得解【题目详解】解:因为,,所以,,所以,所以,又A,M,D三点共线,则存在b∈R,使得,所以,解得,所以,因为,所以由平面向量基本定理可得λ=,μ=,所以λ+μ=故选:C6、A【解题分析】利用三个公理及其推论逐项判断后可得正确的选项.【题目详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.7、C【解题分析】依次计算周期即可.【题目详解】A选项:,错误;B选项:,错误;C选项:,正确;D选项:,错误.故选:C.8、B【解题分析】当在平面内时,,①错误;两个平面的垂线平行,且两个平面不重合,则两个平面平行,②正确;③中,当时,平面可能相交,③错误;④正确.故选B.考点:空间线面位置关系.9、A【解题分析】∵,∴,∴,且方向相同∴,∴.选A10、A【解题分析】由两条直线垂直的条件可得答案.【题目详解】由题意可知,即故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、③⑤【解题分析】按照平均数、极差、方差依次分析各序号即可.【题目详解】连续7天新增病例数:0,0,0,0,2,6,6,平均数是2<3,①错;连续7天新增病例数:6,6,6,6,6,6,6,标准差是0<2,②错;平均数且极差小于或等于2,单日最多增加4人,若有一日增加5人,其他天最少增加3人,不满足平均数,所以单日最多增加4人,③对;连续7天新增病例数:0,3,3,3,3,3,6,平均数是3且标准差小于2,④错;众数等于1且极差小于或等于4,最大数不会超过5,⑤对.故答案为:③⑤.12、1【解题分析】根据正弦及余弦函数的对称性的性质可得的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心,即可求值.【题目详解】∵函数f(x)的图象关于x对称∵f(x)=3sin(ωx+φ)的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心故有则1故答案为1【题目点拨】本题考查了正弦及余弦函数的性质属于基础题13、x+3y-5=0或x=-1【解题分析】当直线l为x=﹣1时,满足条件,因此直线l方程可以为x=﹣1当直线l的斜率存在时,设直线l的方程为:y﹣2=k(x+1),化为:kx﹣y+k+2=0,则,化为:3k﹣1=±(3k+3),解得k=﹣∴直线l的方程为:y﹣2=﹣(x+1),化为:x+3y﹣5=0综上可得:直线l的方程为:x+3y﹣5=0或x=﹣1故答案为x+3y﹣5=0或x=﹣114、fx【解题分析】利用基本初等函数的性质可知满足要求的函数可以是fx=1-a【题目详解】因为fx=2x的定义域为所以fx=-2x的定义域为则fx=1-2x的定义域为所以定义域为R,值域为-∞,1的一个减函数是故答案为:fx15、##【解题分析】利用扇形面积公式进行计算.【题目详解】即,,由扇形面积公式得:.故答案为:16、(1);(2)和【解题分析】(1)根据降幂公式与辅助角公式化简函数解析式,然后由题意求解,从而求解出解析式;(2)根据(1)中的解析式,利用整体法代入化简计算函数的单调减区间,再由,给赋值,求出单调减区间.【小问1详解】化简函数解析式得,因为图像的两条相邻对称轴之间的距离为,即,且函数最大值为,所以且,得,所以函数解析式为.【小问2详解】由(1)得,,得,因为,所以函数的单调减区间为和三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为上的奇函数;证明见解析(2)答案不唯一,具体见解析【解题分析】(1)利用函数奇偶性的定义判断即可,(2)由题意可得,得,然后分和解不等式即可【小问1详解】函数为奇函数证明:函数的定义域为,,即对任意恒成立.所以为上的奇函数【小问2详解】由,得,即因为,,且,所以且由,即当,即时,解得当,即时,解得综上,当时,不等式的解集为;当时,不等式的解集为18、(1)(2)【解题分析】(1)分别求两个集合,再求交集;(2)先求,再求.【小问1详解】,解得:,即,,解得:,即,;【小问2详解】,.19、(1)投资债券,投资股票;(2)投资债券类产品万元,股票类投资为4万元,收益最大值为万元.【解题分析】(1)设函数解析式,,代入即可求出的值,即可得函数解析式;(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元,则,代入解析式,换元求最值即可.【题目详解】(1)设.由题意可得:,,所以,,(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元依题意得即.令则,则所以当即时,收益最大为万元,所以投资债券类产品万元,股票类投资为4万元,收益最大值为万元.20、为奇函数,,【解题分析】由函数奇偶性的定义列方程求解即可【题目详解】若为奇函数,则,所以恒成立,即,所以恒成立,所以,解得,所以当为奇函数时,,若为偶函数,则,所以恒成立,得,得,不合题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年金融市场展望:投资理财策略与风险管理
- 《接触网施工》课件 2.3.1 支柱立杆整正
- 2024年电子商务案例分析解读
- 第47届世界技能大赛移动机器人项目江苏省选拔赛技术技术文件和样题
- 2024年小学语文《青蛙写诗》教学案例
- 2024年PE工程师培训教材:开启职业新篇章
- 2024年Excel图表制作与数据可视化教程
- 《房地产宣传广告说》课件
- 2023中考四川乐山英语真题+答案
- 2024年教育技术趋势:20以内加减法课件的智能化发展
- 2023~2024学年第一学期高一期中考试数学试题含答案
- 2023年全国中学生英语能力竞赛初三年级组试题及答案
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 部编版道德与法治九年级上册 8.2 共圆中国梦 教学设计
- 动车组火灾检测(报警)系统
- 水面垃圾自动打捞船的设计 (全套图纸)
- 装饰施工技术标准及要求
- 2018秋七年级虎外考试卷英语试卷
- 河洛择日法[技巧]
- 医疗器械质量保证及售后服务承诺书模板
- 英语四级单词表4500.xls
评论
0/150
提交评论