版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市惠来一中2024届高一数学第一学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.22.定义在上的函数满足下列三个条件:①;②对任意,都有;③的图像关于轴对称.则下列结论中正确的是AB.C.D.3.土地沙漠化的治理,对中国乃至世界来说都是一个难题,我国创造了治沙成功案例——毛乌素沙漠.某沙漠经过一段时间的治理,已有1000公顷植被,假设每年植被面积以20%的增长率呈指数增长,按这种规律发展下去,则植被面积达到4000公顷至少需要经过的年数为()(参考数据:取)A.6 B.7C.8 D.94.函数的单调递减区间是()A. B.C. D.5.函数的零点所在的区间为()A.(-1,0) B.(0,)C.(,1) D.(1,2)6.已知点,向量,若,则点的坐标为()A. B.C. D.7.给出下列四种说法:①若平面,直线,则;②若直线,直线,直线,则;③若平面,直线,则;④若直线,,则.其中正确说法的个数为()A.个 B.个C.个 D.个8.已知直线和直线,则与之间的距离是()A. B.C.2 D.9.已知函数,的最值情况为()A.有最大值,但无最小值 B.有最小值,有最大值1C.有最小值1,有最大值 D.无最大值,也无最小值10.对于函数,,“”是“的图象既关于原点对称又关于轴对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于x的不等式的解集为,则的解集为_________12.已知函数是定义在的偶函数,且在区间上单调递减,若实数满足,则实数的取值范围是__________13.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________14.已知直线,互相平行,则__________.15.下列命题中所有正确的序号是______________①函数最小值为4;②函数的定义域是,则函数的定义域为;③若,则的取值范围是;④若(,),则16.设且,函数,若,则的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,计算:(1)(2)18.(1)计算:.(2)若,求的值.19.已知函数.(1)求函数的单调区间;(2)若函数在有且仅有两个零点,求实数取值范围.20.已知二次函数y=ax2+bx﹣a+2(1)若关于x的不等式ax2+bx﹣a+2>0的解集是{x|﹣1<x<3},求实数a,b的值;(2)若b=2,a>0,解关于x的不等式ax2+bx﹣a+2>021.已知函数是R上的奇函数.(1)求a的值,并判断的单调性;(2)若存在,使不等式成立,求实数b的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】首先根据解析式求值,结合奇函数有即可求得【题目详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【题目点拨】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值2、D【解题分析】先由,得函数周期为6,得到f(7)=f(1);再利用y=f(x+3)的图象关于y轴对称得到y=f(x)的图象关于x=3轴对称,进而得到f(1)=f(5);最后利用条件(2)得出结论因为,所以;即函数周期为6,故;又因为的图象关于y轴对称,所以的图象关于x=3对称,所以;又对任意,都有;所以故选:D考点:函数的奇偶性和单调性;函数的周期性.3、C【解题分析】根据题意列出不等式,利用对数换底公式,计算出结果.【题目详解】经过年后,植被面积为公顷,由,得.因为,所以,又因为,故植被面积达到4000公顷至少需要经过的年数为8.故选:C4、D【解题分析】解不等式,即可得出函数的单调递减区间.【题目详解】解不等式,得,因此,函数的单调递减区间为.故选:D.【题目点拨】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题.5、C【解题分析】应用零点存在性定理判断零点所在的区间即可.【题目详解】由解析式可知:,∴零点所在的区间为.故选:C.6、B【解题分析】设点坐标为,利用向量的坐标运算建立方程组,解之可得选项.【题目详解】设点坐标为,,A,所以,又,,所以.解得,解得点坐标为.故选:B.7、D【解题分析】根据线面关系举反例否定命题,根据面面平行定义证命题正确性.【题目详解】若平面,直线,则可异面;若直线,直线,直线,则可相交,此时平行两平面交线;若直线,,则可相交,此时平行两平面交线;若平面,直线,则无交点,即;选D.【题目点拨】本题考查线面平行关系,考查空间想象能力以及简单推理能力.8、A【解题分析】利用平行线间的距离公式计算即可【题目详解】由平行线间的距离公式得故选:A9、C【解题分析】利用二次函数的图象与性质,得到二次函数的单调性,即可求解最值,得到答案.【题目详解】由题意,函数,可得函数在区间上单调递增,所以当时,函数取得最小值,最小值为,当时,函数取得最小值,最小值为,故选C.【题目点拨】本题主要考查了二次函数的性质及其应用,其中解答中熟练利用二次函数的性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.10、C【解题分析】由函数奇偶性的定义求出的解析式,可得出结论.【题目详解】若函数的定义域为,的图象既关于原点对称又关于轴对称,则,可得,因此,“”是“的图象既关于原点对称又关于轴对称”的充要条件故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】由已知条件知,结合根与系数关系可得,代入化简后求解,即可得出结论.【题目详解】关于x的不等式的解集为,可得,方程的两根为,∴,所以,代入得,,即,解得或.故答案为:或.【题目点拨】本题考查一元二次不等式与一元二次方程的关系,以及解一元二次不等式,属于基础题.易错点是忽视对的符号的判断.12、【解题分析】先利用偶函数的性质将不等式化简为,再利用函数在上的单调性即可转化为,然后求得的范围.【题目详解】因为为R上偶函数,则,所以,所以,即,因为为上的减函数,,所以,解得,所以,的范围为.【题目点拨】1.函数值不等式的求法:(1)利用函数的奇偶性、特殊点函数值等性质将函数值不等式转化为与大小比较的形式:;(2)利用函数单调性将转化为自变量大小比较的形式,再求解不等式即可.
偶函数的性质:;奇函数性质:;
若在D上为增函数,对于任意,都有;若在D上为减函数,对于任意,都有.13、①.0②.【解题分析】利用坐标法可得,结合条件及完全平方数的最值即得.【题目详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.14、【解题分析】由两直线平行的充要条件可得:,即:,解得:,当时,直线为:,直线为:,两直线重合,不合题意,当时,直线为:,直线为:,两直线不重合,综上可得:.15、③④【解题分析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④.详解】对于①,当时,,由基本不等式可得,当且仅当时,即当时,等号成立,但,故等号不成立,所以,函数,的最小值不是,①错误;对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误;对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确;对于④,令,函数在上单调递减,由得,则,即,故④正确.故答案为:③④.16、【解题分析】根据函数的解析式以及已知条件可得出关于实数的等式,由此可解得实数的值.【题目详解】因为,且,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)先把化为,然后代入可求;(2)先把化为,然后代入可求.【题目详解】(1);(2).【题目点拨】本题主要考查齐次式的求值问题,齐次式一般转化为含有正切的式子,结合正切值可求.18、(1);(2)【解题分析】(1)根据指数幂运算、对数加法运算以及三角函数的诱导公式一,化简即可求出结果;(2)利用诱导公式和同角的基本关系,对原式化简,可得,再将代入,即可求出结果.【题目详解】解:(1)原式.(2)因为,所以.19、(1)单调递增区间为,单调递减区间为(2)【解题分析】(1)先由三角恒等变换化简解析式,再由正弦函数的性质得出单调区间;(2)由的单调性结合零点的定义求出实数的取值范围.【小问1详解】由得故函数的单调递增区间为.由得故函数的单调递减区间为【小问2详解】由(1)可知,在上为增函数,在上为减函数由题意可知:,即,解得,故实数的取值范围为.20、(1)a=﹣1,b=2(2)见解析【解题分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【小问1详解】由题意知,﹣1和3是方程ax2+bx﹣a+2=0两根,所以,解得a=﹣1,b=2;【小问2详解】当b=2时,不等式ax2+bx﹣a+2>0为ax2+2x﹣a+2>0,即(ax﹣a+2)(x+1)>0,所以,当即时,解集为;当即时,解集为或;当即时,解集为或.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 360有钱联盟(2025版)会员等级提升及专属服务合同2篇
- 2024年福建高速工程建设项目合同
- 2025版大型商业综合体施工总承包合同范本3篇
- 二零二五年度商业秘密保护协议标准范本3篇
- 危重患者肠内营养支持的护理
- 大班幼儿自我保护活动策划方案五篇
- 二零二五年度劳动合同:某企业与员工关于劳动条件的合同3篇
- 二零二五年度大型工程项目安全文明施工管理服务协议书3篇
- xx市数据中心产业园项目可行性研究报告
- 2024版:变压器购销合同详解3篇
- 高一物理必修1期末考试测试题(五套)
- 泌尿外科膀胱镜检查技术操作规范
- 避雷针、线保护范围计算表
- 10KV变配电室交接班管理制度
- 风机振动正常范围国标标准
- 江苏省南京市外国语学校2022-2023学年七年级上学期第一次段考英语试卷
- 针对土石方运输重难点解决措施
- 多工步组合机床的plc控制系统设计
- 常见酸和碱说课课件
- 三年级下册英语说课稿-《Lesson 11 What Do They Eat》|冀教版(三起)
- 2023-2024学年湖北省利川市小学语文六年级期末通关测试题详细参考答案解析
评论
0/150
提交评论