版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省厦门一中数学高一上期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“且”的()A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.既不充分也不必要条件2.已知,函数在上单调递减,则的取值范围是()A. B.C. D.3.已知函数,则“”是“函数在区间上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.如果幂函数的图象经过点,则在定义域内A.为增函数 B.为减函数C.有最小值 D.有最大值5.要得到函数的图像,只需将函数图的图像A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位6.若角满足,,则角所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知函数f(x)=3x A. B.C. D.8.已知全集,集合,图中阴影部分所表示的集合为A. B.C. D.9.若点关于直线的对称点是,则直线在轴上的截距是A.1 B.2C.3 D.410.()A.0 B.1C.6 D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数且的图象恒过定点__________.12.如图所示,正方体的棱长为,分别是棱,的中点,过直线的平面分别与棱.交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为___________.13.已知集合,,则________________.(结果用区间表示)14.给出以下四个结论:①若函数的定义域为,则函数的定义域是;②函数(其中,且)图象过定点;③当时,幂函数的图象是一条直线;④若,则的取值范围是;⑤若函数在区间上单调递减,则的取值范围是.其中所有正确结论的序号是___________.15.已知函数,若,则___________;若存在,满足,则的取值范围是___________.16.若不等式对一切恒成立,则a的取值范围是______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在区间上,如果函数为增函数,而函数为减函数,则称函数为“弱增”函数.试证明:函数在区间上为“弱增”函数.18.(1)计算:,(为自然对数的底数);(2)已知,求的值.19.如图,在四棱锥P-ABCD中,ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,点E是PD的中点.(1)求证:PB//平面AEC;(2)求D到平面AEC的距离.20.设全集为R,集合,(1)求;(2)求21.某学校高一学生有1000名学生参加一次数学小测验,随机抽取200名学生的测验成绩得如图所示的频率分布直方图:(1)求该学校高一学生随机抽取的200名学生的数学平均成绩和标准差(同一组中的数据用该组区间的中点值做代表);(2)试估计该校高一学生在这一次的数学测验成绩在区间之内的概率是多少?测验成绩在区间之外有多少位学生?(参考数据:)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据充分条件和必要条件的定义结合不等式的性质分析判断【题目详解】当时,满足,而不成立,当且时,,所以,所以“”是“且”的必要而不充分条件,故选:A2、A【解题分析】由题意可得,,,,.故A正确考点:三角函数单调性3、A【解题分析】先由在区间上单调递增,求出的取值范围,再根据充分条件,必要条件的定义即可判断.【题目详解】解:的对称轴为:,若在上单调递增,则,即,在区间上单调递增,反之,在区间上单调递增,,故“”是“函数在区间上单调递增”的充分不必要条件.故选:A.4、C【解题分析】由幂函数的图象经过点,得到,由此能求出函数的单调性和最值【题目详解】解:幂函数的图象经过点,,解得,,在递减,在递增,有最小值,无最大值故选【题目点拨】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答5、D【解题分析】根据三角函数图像变换的知识,直接选出正确选项.【题目详解】依题意,故向左平移个单位得到,故选D.【题目点拨】本小题主要考查三角函数图像变换的知识,属于基础题.6、C【解题分析】根据,,分别确定的范围,综合即得解.【题目详解】解:由知,是一、三象限角,由知,是三、四象限角或终边在y轴负半轴上,故是第三象限角故选:C7、B【解题分析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【题目详解】由题意知,,则,所以.故选:B8、A【解题分析】由题意可知,阴影部分所表示的元素属于,不属于,结合所给的集合求解即可确定阴影部分所表示的集合.【题目详解】由已知中阴影部分在集合中,而不在集合中,故阴影部分所表示的元素属于,不属于(属于的补集),即.【题目点拨】本题主要考查集合表示方法,Venn图及其应用等知识,意在考查学生的转化能力和计算求解能力.9、D【解题分析】∵点A(1,1)关于直线y=kx+b的对称点是B(﹣3,3),由中点坐标公式得AB的中点坐标为,代入y=kx+b得①直线AB得斜率为,则k=2.代入①得,.∴直线y=kx+b为,解得:y=4.∴直线y=kx+b在y轴上的截距是4.故选D.10、B【解题分析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可.【题目详解】,故选B.【题目点拨】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【题目详解】令,得,且.函数的图象过定点.故答案为:.12、①②④【解题分析】①连接,在正方体中,平面,所以平面平面,所以①是真命题;②连接MN,因为平面,所以,四边形MENF的对角线EF是定值,要使四边形MENF面积最小,只需MN的长最小即可,当M为棱的中点时,即当且仅当时,四边形MENF的面积最小;③因为,所以四边形是菱形,当时,的长度由大变小,当时,的长度由小变大,所以周长,是单调函数,是假命题;④连接,把四棱锥分割成两个小三棱锥,它们以为底,为顶点,因为三角形的面积是个常数,到平面的距离也是一个常数,所以四棱锥的体积为常函数;命题中真命题的序号为①②④考点:面面垂直及几何体体积公式13、【解题分析】先求出集合A,B,再根据交集的定义即可求出.【题目详解】,,.故答案为:.14、①④⑤【解题分析】根据抽象函数的定义域,对数函数的性质、幂函数的定义、对数不等式的求解方法,以及复合函数单调性的讨论,对每一项进行逐一分析,即可判断和选择.【题目详解】对①:因为,,所以的定义域为,令,故,即的定义域为,故①正确;对②:当,,图象恒过定点,故②错误;对③:若,则的图象是两条射线,故③错误;对④:原不等式等价于,故(无解)或,解得,故④正确;对⑤:实数应满足,解得,故⑤正确;综上所述:正确结论的序号为①④⑤.【题目点拨】(1)抽象函数的定义域是一个难点,一般地,如果已知的定义域为,的定义域为,那么的定义域为;如果已知的定义域为,那么的定义域可取为.(2)形如的复合函数,如果已知其在某区间上是单调函数,我们不仅要考虑在给定区间上单调性,还要考虑到其在给定区间上总有成立.15、①.②.【解题分析】若,则,然后分、两种情况求出的值即可;画出的图象,若存在,满足,则,其中,然后可得,然后可求出答案.【题目详解】因为,所以若,则,当时,,解得,满足当时,,解得,不满足所以若,则的图象如下:若存在,满足,则,其中所以因为,所以,,所以故答案为:;16、【解题分析】先讨论时不恒成立,再根据二次函数的图象开口方向、判别式进行求解.【题目详解】当时,则化为(不恒成立,舍),当时,要使对一切恒成立,需,即,即a的取值范围是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解题分析】根据定义,只要证明函数在是单调减函数即可,这可以通过单调减函数的定义去证明.证明:设任意,且,由于,所以在区间上,为增函数.令,则有:.由于,则且,故.故在区间上,函数为减函数.由“弱增”函数的定义可知,函数在区间上为“弱增”函数.18、(1)2;(2).【解题分析】(1)由条件利用对数的运算性质求得要求式子的值.(2)由条件利用同角三角函数的基本关系平方即可求解【题目详解】(1)原式.(2)因为,两边同时平方,得.【题目点拨】本题主要考查对数的运算性质,同角三角函数的基本关系,熟记公式是关键,属于基础题19、(1)证明见解析(2)【解题分析】(1)连接交于,连接,则可得,再由E是PD的中点,则可利用三角形中位线定理可得∥,然后利用线面平行的判定定理可证得结论;(2)由已知条件可证明,都为直角三角形,所以可求出,从而可求出的面积,然后利用等体积法可求出D到平面AEC的距离.【小问1详解】连接交于,连接,因为四边形为平行四边形,所以,因为点E是PD的中点,所以∥,因为平面,平面,所以∥平面,【小问2详解】因为∥,,所以,,因为平面,平面,所以,因为,、平面,所以平面,因为平面,所以,在直角中,,同理,在等腰中,,取的中点,连接,则∥,,因平面,所以平面,,设D到平面AEC的距离为,由,得,所以,得,所以D到平面AEC距离为20、(1);(2)或.【解题分析】(1)根据给定条件利用交集的定义直接计算即可作答.(2)利用并集的定义求出,再借助补集的定义直接求解作答.【小问1详解】因为,,所以.【小问2详解】因为,,则,而全集为R,所以或.21、(1)平均数,样本标准差.(2)概率为0.9356,全校测验成绩在区间之外约有64(人)【解题分析】(1)根据频率分布直方图中平均数小矩形底边中点乘以小矩形的面积之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《合作方案推介》课件
- 口腔科正畸护理
- 2024年山东省第三届中小学生海洋知识竞赛题库及答案(初中组第201-300题)
- 安全小活动总结报告
- 大学生IT专业职业规划
- 2型糖尿病胰岛素治疗
- 苏教版语文六下教学课件教学
- 《公司创业》课件
- 第三单元双基能力提升训练-六年级下册语文练测乐园(含答案)
- 《江东区国家税务局》课件
- 公共行政学网上学习行为300字
- 第四代篦冷机液压系统的故障与维护获奖科研报告
- 二次函数线段的最值课件
- 呼吸消化科科室现状调研总结与三年发展规划汇报
- 与复旦大学合作协议书
- 第五单元(知识清单)【 新教材精讲精研精思 】 七年级语文上册 (部编版)
- 缓冲托辊说明书
- 煤矿机电运输安全培训课件
- 2023年人教版新目标八年级英语下册全册教案
- 安抚(氟比洛芬酯注射液)-泌尿外科术后疼痛管理的基础药物
- 学前教育职业规划书
评论
0/150
提交评论