版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省黑河北安市2024届数学九上期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,函数与的图像相交于,两点,过点作轴的平行线,交函数的图像于点,连接,交轴于点,则的面积为()A. B. C.2 D.2.如图,在中,点在边上,且,,过点作,交边于点,将沿着折叠,得,与边分别交于点.若的面积为,则四边形的面积是()A. B. C. D.3.如图,在中,,,,,则的长为()A.6 B.7 C.8 D.94.对于二次函数y=-(x+1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x=1;③其图象的顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.45.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20° B.30° C.40° D.45°6.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点.寸,寸,则可得直径的长为()A.13寸 B.26寸C.18寸 D.24寸7.如图,在△ABC中,AB=18,BC=15,cosB=,DE∥AB,EF⊥AB,若=,则BE长为()A.7.5 B.9 C.10 D.58.如图,在矩形中,,对角线相交于点,垂直平分于点,则的长为()A.4 B. C.5 D.9.要使有意义,则x的取值范围为()A.x≤0 B.x≥-1 C.x≥0 D.x≤-110.一个圆柱和一个正方体按如图所示放置,则其俯视图为()A. B.C. D.二、填空题(每小题3分,共24分)11.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系:h=20t-5t2,当小球达到最高点时,小球的运动时间为第_________秒时.12.如图,在平面直角坐标系中,点A的坐标为,反比例函数的图象经过线段OA的中点B,则k=_____.13.若是关于x的一元二次方程的解,则代数式的值是________.14.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.15.在平面直角坐标系中,点的坐标分别是,以点为位似中心,相们比为,把缩小,得到,则点的对应点的坐标为_____.16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.17.在△ABC中,分别以AB,AC为斜边作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,连接DE.若DE=5,则BC长为_____.18.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).三、解答题(共66分)19.(10分)如图,已知抛物线与轴交于、两点,,交轴于点,对称轴是直线.(1)求抛物线的解析式及点的坐标;(2)连接,是线段上一点,关于直线的对称点正好落在上,求点的坐标;(3)动点从点出发,以每秒2个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为()秒.若与相似,请求出的值.20.(6分)甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.21.(6分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”活动.经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,最终没有学生得分低于25分,也没有学生得满分.根据测试成绩绘制出频数分布表和频数分布直方图(如图).请结合图标完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若本次决赛的前5名是3名女生A、B、C和2名男生M、N,若从3名女生和2名男生中分别抽取1人参加市里的比赛,试用列表法或画树状图的方法求出恰好抽到女生A和男生M的概率.22.(8分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?23.(8分)如图,在平面直角坐标系xOy中,二次函数的图象与轴,轴的交点分别为和.(1)求此二次函数的表达式;(2)结合函数图象,直接写出当时,的取值范围.24.(8分)已知关于x的一元二次方程x2+2x+m=1.(1)当m=3时,判断方程的根的情况;(2)当m=﹣3时,求方程的根.25.(10分)如图所示,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长.(2)求经过O,D,C三点的抛物线的解析式.(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ.(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,直接写出M点的坐标;若不存在,请说明理由.26.(10分)如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件时,四边形EFHI是矩形;②当AG与BC满足条件时,四边形EFHI是菱形.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先确定A、B两点坐标,然后再确定点C坐标,从而可求△ABC的面积,再根据三角形中位线的性质可知答案.【题目详解】∵函数与的图像相交于,两点∴联立解得∴点A、B坐标分别是∵过点作轴的平行线,交函数的图像于点∴把代入到中得,解得∴点C的坐标为∴∵OA=OB,OE∥AC∴OE是△ABC的中位线∴故答案选B.【题目点拨】本题是一道综合题,考查了一次函数与反比例函数和三角形中位线性质,能够充分调动所学知识是解题的关键.2、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出S△ADE=,由平行线的性质可得,可得S△FGM=2,再利用S四边形DEGF=S△DEM-S△FGM,即可得到答案.【题目详解】解:如图,连接AM,交DE于点H,交BC于点P,
∵DE∥BC,
∴,∴∵的面积为∴S△ADE=×32=设AH=5a,HP=3a
∵沿着折叠
∴AH=HM=5a,S△ADE=S△DEM=
∴PM=2a,
∵DE∥BC
∴
∴S△FGM=2∴S四边形DEGF=S△DEM-S△FGM=-2=
故选:B.【题目点拨】本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键.3、C【分析】根据平行线分线段成比例定理,由DE∥BC得,然后利用比例性质求EC和AE的值即可【题目详解】∵,∴,即,∴,∴.故选C.【题目点拨】此题考查平行线分线段成比例,解题关键在于求出AE4、C【解题分析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【题目详解】∵∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y随x的增大而增大,∴当x>1时,y随x的增大而增大,故④正确,∴正确的结论有3个,故选:C.【题目点拨】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.5、C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【题目详解】∴∠B=60°,∵四边形ABCD是圆内接四边形,∴∠D=180°−∠B=120°,∴∠ACD=180°−∠DAC−∠D=40°,故选C.6、B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长.【题目详解】连接OA,由垂径定理可知,点E是弦AB的中点,设半径为r,由勾股定理得,即解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【题目点拨】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.7、C【分析】先设DE=x,然后根据已知条件分别用x表示AF、BF、BE的长,由DE∥AB可知,进而可求出x的值和BE的长.【题目详解】解:设DE=x,则AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cosB==,∴BE=(18﹣2x),∵DE∥AB,∴,∴∴x=6,∴BE=(18﹣12)=10,故选:C.【题目点拨】本题主要考查了三角形的综合应用,根据平行线得到相关线段比例是解题关键.8、B【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【题目详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=;故选:B.【题目点拨】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.9、B【分析】根据二次根式有意义有条件进行求解即可.【题目详解】要使有意义,则被开方数要为非负数,即,∴,故选B.【题目点拨】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.10、D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【题目详解】解:一个圆柱和一个正方体按如图所示放置,则其俯视图为左边是一个圆,右边是一个正方形.故选:D.【题目点拨】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.二、填空题(每小题3分,共24分)11、1【解题分析】h=10t-5t1=-5(t-1)1+10,∵-5<0,∴函数有最大值,则当t=1时,球的高度最高.故答案为1.12、-2【解题分析】由A,B是OA的中点,点B的坐标,把B的坐标代入关系式可求k的值.【题目详解】∵A(-4,2),O(0,0),B是OA的中点,∴点B(-2,1),代入得:∴故答案为:-2【题目点拨】本题考查反比例函数图象上点的坐标特征及线段中点坐标公式;根据中点坐标公式求出点B坐标,代入求k的值是本题的基本方法.13、1【分析】把x=2代入已知方程求得2a+b的值,然后将其整体代入所求的代数式并求值即可.【题目详解】解:∵关于x的一元二次方程的解是x=2,∴4a+2b-8=0,则2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=1.故答案是:1.【题目点拨】本题考查了一元二次方程的解定义,以及求代数式的值,解题时,利用了“整体代入”的数学思想.14、74【分析】利用加权平均数公式计算.【题目详解】甲的成绩=,故答案为:74.【题目点拨】此题考查加权平均数,正确理解各数所占的权重是解题的关键.15、或【解题分析】利用位似图形的性质可得对应点坐标乘以和-即可求解.【题目详解】解:以点为位似中心,相似比为,把缩小,点的坐标是则点的对应点的坐标为或,即或,故答案为:或.【题目点拨】本题考查的是位似图形,熟练掌握位似变换是解题的关键.16、8【解题分析】试题分析:设红球有x个,根据概率公式可得,解得:x=8.考点:概率.17、1【分析】由在Rt△ABD和Rt△ACE中,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,可证得△ABD∽△ACE,AD=AB,继而可证得△ABC∽△ADE,然后由相似三角形的对应边成比例,求得答案.【题目详解】∵∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,∴△ABD∽△ACE,AD=AB,∴∠BAD=∠CAE,AB:AC=AD:AE,∴∠BAC=∠DAE,AB:AD=AC:AE,∴△ABC∽△ADE,∴=2,∵DE=5,∴BC=1.故答案为:1.【题目点拨】此题考查了相似三角形的判定与性质以及含30度角的直角三角形.此题难度适中,注意掌握数形结合思想的应用.18、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)【分析】根据相似三角形的判定解答即可.【题目详解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案为:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【题目点拨】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答.三、解答题(共66分)19、(1),点坐标为;(2)F;(3)【分析】(1)先求出点A,B的坐标,将A、B的坐标代入中,即可求解;
(2)确定直线BC的解析式为y=−x+3,根据点E、F关于直线x=1对称,即可求解;
(3)若与相似,则或,即可求解;【题目详解】解:(1)∵点、关于直线对称,,∴,.代入中,得:,解,∴抛物线的解析式为.∴点坐标为;(2)设直线的解析式为,则有:,解得,∴直线的解析式为.∵点、关于直线对称,又到对称轴的距离为1,∴.∴点的横坐标为2,将代入中,得:,∴F(2,1);(3)秒时,.如图当时∴,∴,.①若,则,即(舍去),或.②若,则,即(舍去),或(舍去)∴.【题目点拨】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.20、(1)共有9种等可能的结果;(2).【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得出现平局的情况,再利用概率公式求解即可.【题目详解】(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况,∴出现平局的概率为:.考点:列表法与树状图法.21、(1)16;(2)见解析;(3)图见解析,【解题分析】(1)利用总数50减去其它项的频数即可求得结果;(2)根据第三组,第四组的人数,画出直方图即可;(3)利用树状图方表示出所有可能的结果,然后利用概率公式即可求解.【题目详解】(1)由频数分布表可得:a=50−4−6−14−10=16;(2)频数分布直方图如图所示:(3)根据题意画树状图如下:从上图可知共有6种等可能情况,其中抽到女生A和男生M的情况有1种,所以恰好抽到女生A和男生M的概率.【题目点拨】本题考查树状图法求概率、读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22、(1);(2)当销售单价定为74元或72元时,每周销售利润最大,最大利润是5280元;【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;
(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;【题目详解】解:(1)依题意有:;
(2)依题意有:
W=(80-50-x)(10x+160)===-10(x-7)2+5290,
因为x为偶数,
所以当销售单价定为80-6=74元或80-8=72时,每周销售利润最大,最大利润是5280元;【题目点拨】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.23、(1);(2)或.【分析】(1)把已知的两点代入解析式即可求出二次函数的解析式;(2)由抛物线的对称性与图形即可得出时的取值范围.【题目详解】解:(1)∵抛物线与轴、轴的交点分别为和,∴.解得:.∴抛物线的表达式为:.(2)二次函数图像如下,由图像可知,当时,的取值范围是或.【题目点拨】此题主要考察二次函数的应用.24、(1)原方程无实数根.(2)x1=1,x2=﹣3.【分析】(1)判断一元二次方程根的情况,只要看根的判别式△=b2-4ac的值的符号即可判断:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.(2)把m的值代入方程,用因式分解法求解即可.【题目详解】解:(1)∵当m=3时,△=b2﹣4ac=22﹣4×3=﹣8<1,∴原方程无实数根.(2)当m=﹣3时,原方程变为x2+2x﹣3=1,∵(x﹣1)(x+3)=1,∴x﹣1=1,x+3=1.∴x1=1,x2=﹣3.25、(1)3;(2);(3)t=;(1)存在,M点的坐标为(2,16)或(-6,16)或【分析】(1)由矩形的性质以及折叠的性质可求得CE、CO的长,在Rt△COE中,由勾股定理可求得OE的长;
(2)设AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,从而得出D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;
(3)用含t的式子表示出BP、EQ的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),设N(-2,n),M(m,y),分以下三种情况:①以EN为对角线,根据对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;②当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;③当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案.【题目详解】解:(1)∵OABC为矩形,∴BC=AO=5,CO=AB=1.又由折叠可知,,;(2)设AD=m,则DE=BD=1-m,
∵OE=3,∴AE=5-3=2,在Rt△ADE中,AD2+AE2=DE2,∴m2+22=(1-m)2,∴m=,∴D,∵该抛物线经过C(-1,0)、O(0,0),∴设该抛物线解析式为,把点D代入上式得,∴a=,∴;(3)如图所示,连接DP、DQ.由题意可得,CP=2t,EQ=t,则BP=5-2t.当DP=DQ时,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5-2t=t,∴t=.故当t=时,DP=DQ;(1)∵抛物线的对称轴为直线x==-2,
∴设N(-2,n),
又由(2)可知C(-1,0),E(0,-3),设M(m,y),
①当EN为对角线,即四边形ECNM是平行四边形时,如图1,
则线段EN的中点横坐标为=-1,线段CM的中点横坐标为,
∵EN,CM互相平分,
∴=-1,解得m=2,
又M点在抛物线上,
∴y=×22+×2=16,
∴M(2,16);
②当EM为对角线,即四边形ECMN是平行四边形时,如图2,
则线段EM的中点横坐标为,线段CN中点横坐标为,∵EM,CN互相平分,
∴m=-3,解得m=-6,
又∵M点在抛物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物业管理联合运营协议范本版B版
- 2024年版家用电器保修协议样本版B版
- 文化艺术中心装修敲墙合同
- 员工辞退合同
- 城市交通调度管理办法
- 门店买卖合同范本
- 企业-写字楼租赁合同
- 河北省部分重点高中2024届高三上学期期末考试数学试题(解析版)
- 木制装饰木工班组施工合同
- 历史正剧监制合作协议
- 2020新版个人征信报告模板
- 数学说题大赛评分标准
- DB61∕T 5000-2021 装配式钢结构建筑技术规程
- 疫苗学PPT课件
- 康美药业财务造假PPT课件
- 装饰装修工程质量管理体系与措施
- 温州市房屋租赁合同-通用版
- 第7讲_校对符号使用
- 姬浩然书香家庭申请表(共2页)
- 高中学生遵纪守法主题班会PPT教学讲座课件
- 医源性冠状动脉夹层的识别与防治
评论
0/150
提交评论