版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2016—2017学年北京市密云县高二(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.命题p:∀x∈R,x≥0的否定是()A.¬p:∀x∈R,x<0 B.¬p:∃x∈R,x≤0 C.¬p:∃x∈R,x<0 D.¬p:∀x∈R,x≤02.已知向量=(2,3,1),=(1,2,0),则|﹣|等于()A.1 B. C.3 D.93.将一根长为3米的绳子在任意位置剪断,则剪得两段的长度都不小于1米的概率是()A. B. C. D.4.“a>0,b>0”是“曲线ax2+by2=1为椭圆”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.执行如图的程序框图,若输入t=﹣1,则输出t的值等于()A.3 B.5 C.7 D.156.从装有2个红球和2个黑球的口袋内任取2个球,则与事件恰有两个红球既不对立也不互斥的事件是()A.至少有一个黑球 B.恰好一个黑球C.至多有一个红球 D.至少有一个红球7.已知F1,F2是双曲线的两个焦点,过F2作垂直于实轴的直线PQ交双曲线于P,Q两点,若∠PF1Q=,则双曲线的离心率e等于()A.+2 B.+1 C. D.﹣18.已知正方体ABCD﹣A1B1C1D1,点E,F,G分别是线段B1B,AB和A1C上的动点,观察直线CE与D1F,CE与D1G.给出下列结论:①对于任意给定的点E,存在点F,使得D1F⊥CE;②对于任意给定的点F,存在点E,使得CE⊥D1F;③对于任意给定的点E,存在点G,使得D1G⊥CE;④对于任意给定的点G,存在点E,使得CE⊥D1G.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个二、填空题:本大题共6小题,每小题5分,共30分。9.某校高一年级三个班共有学生120名,这三个班的男、女生人数如下表.已知在全年级学生中随机抽取1人,抽到二班女生的概率是0。2.则x=;现用分层抽样的方法在全年级抽取30名学生,则应在三班抽取的学生人数为.一班二班三班女生人数20xy男生人数2020z10.双曲线的离心率等于;渐近线方程为.11.执行如图所示的程序框图,输出的s值为.12.在某次摸底考试中,随机抽取100个人的成绩频率分布直方图如图,若参加考试的共有4000人,那么分数在90分以上的人数约为人,根据频率分布直方图估计此次考试成绩的中位数为.13.抛物线y2=4x的焦点为F,经过F的直线与抛物线在x轴上方的部分相交于点A,与准线l交于点B,且AK⊥l于K,如果|AF|=|BF|,那么△AKF的面积是.14.平面内到定点F(0,1)和定直线l:y=﹣1的距离之和等于4的动点的轨迹为曲线C.关于曲线C的几何性质,给出下列三个结论:①曲线C关于y轴对称;②若点P(x,y)在曲线C上,则|y|≤2;③若点P在曲线C上,则1≤|PF|≤4.其中,所有正确结论的序号是.三、解答题:本大题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程.15.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:学生A1A2A3A4A5数学8991939597物理8789899293(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.16.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(1)体育成绩大于或等于70分的学生常被称为“体育良好”,已知该校高一年级有1000名学生,试估计高一全校中“体育良好”的学生人数;(2)为分析学生平时的体育活动情况,现从体积成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,当数据a,b,c的方差s2最小时,写出a,b,c的值.(结论不要求证明)(注:s2=[(x)2+(x2﹣)2+…+(x)2],其中为数据x1,x2,…,xn的平均数)17.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=CB=CC1=2,E是AB中点.(Ⅰ)求证:AB1⊥平面A1CE;(Ⅱ)求直线A1C1与平面A1CE所成角的正弦值.18.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,点E是PB的中点,点F在边BC上移动.(Ⅰ)若F为BC中点,求证:EF∥平面PAC;(Ⅱ)求证:AE⊥PF;(Ⅲ)若二面角E﹣AF﹣B的余弦值等于,求的值.19.已知抛物线y2=2px(p>0)的准线方程是.(Ⅰ)求抛物线的方程;(Ⅱ)设直线y=k(x﹣2)(k≠0)与抛物线相交于M,N两点,O为坐标原点,证明:OM⊥ON.20.已知A,B,C为椭圆W:x2+2y2=2上的三个点,O为坐标原点.(Ⅰ)若A,C所在的直线方程为y=x+1,求AC的长;(Ⅱ)设P为线段OB上一点,且|OB|=3|OP|,当AC中点恰为点P时,判断△OAC的面积是否为常数,并说明理由.
2016-2017学年北京市密云县高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项.1.命题p:∀x∈R,x≥0的否定是()A.¬p:∀x∈R,x<0 B.¬p:∃x∈R,x≤0 C.¬p:∃x∈R,x<0 D.¬p:∀x∈R,x≤0【考点】命题的否定.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定¬p:∃x∈R,x<0,故选:C2.已知向量=(2,3,1),=(1,2,0),则|﹣|等于()A.1 B. C.3 D.9【考点】向量的模.【分析】先根据空间向量的减法运算法则求出﹣,然后利用向量模的公式求出所求即可.【解答】解:∵=(2,3,1),=(1,2,0),∴﹣=(1,1,1)∴|﹣|==3.将一根长为3米的绳子在任意位置剪断,则剪得两段的长度都不小于1米的概率是()A. B. C. D.【考点】几何概型.【分析】根据题意确定为几何概型中的长度类型,将长度为3m的绳子分成相等的三段,在中间一段任意位置剪断符合要求,从而找出中间1m处的两个界点,再求出其比值.【解答】解:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,才使得剪得两段的长都不小于1m,所以由几何概型的公式得到事件A发生的概率P(A)=.故选:A.4.“a>0,b>0”是“曲线ax2+by2=1为椭圆"的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】结合椭圆的定义,利用充分条件和必要条件的定义即可得到结论.【解答】解:当a=b=1时,满足a>0,b>0,曲线方程ax2+by2=1为x2+y2=1为圆,不是椭圆,充分性不成立.若ax2+by2=1表示椭圆,则a>0,b>0且a≠b,即a>0,b>0,必要性成立,即“a>0,b>0"是“曲线ax2+by2=1为椭圆”的必要不充分条件,故选:B.5.执行如图的程序框图,若输入t=﹣1,则输出t的值等于()A.3 B.5 C.7 D.15【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的t的值,当t的值不满足条件(t+2)(t﹣5)<0时退出循环,输出即可得解.【解答】解:模拟执行程序,可得t=﹣1,不满足条件t>0,t=0,满足条件(t+2)(t﹣5)<0,不满足条件t>0,t=1,满足条件(t+2)(t﹣5)<0,满足条件t>0,t=3,满足条件(t+2)(t﹣5)<0,满足条件t>0,t=7,不满足条件(t+2)(t﹣5)<0,退出循环,输出t的值为7.故选:C.6.从装有2个红球和2个黑球的口袋内任取2个球,则与事件恰有两个红球既不对立也不互斥的事件是()A.至少有一个黑球 B.恰好一个黑球C.至多有一个红球 D.至少有一个红球【考点】互斥事件与对立事件.【分析】利用对立事件、互斥事件定义直接求解.【解答】解:从装有2个红球和2个黑球的口袋内任取2个球,在A中,至少有一个黑球与事件恰有两个红球是对立事件,故A不成立;在B中,恰好一个黑球与事件恰有两个红球是互的事件,故B不成立;在C中,至多一个红球与事件恰有两个红球是对立事件,故C不成立;在D中,至少一个红球与事件恰有两个红球既不对立也不互斥的事件,故D成立.故选:D.7.已知F1,F2是双曲线的两个焦点,过F2作垂直于实轴的直线PQ交双曲线于P,Q两点,若∠PF1Q=,则双曲线的离心率e等于()A.+2 B.+1 C. D.﹣1【考点】双曲线的简单性质.【分析】根据题设条件我们知道|PQ|=,|F1F2|=2c,|QF1|=,因为∠PF2Q=90°,则2(+4c2)=,据此可以推导出双曲线的离心率.【解答】解:由题意可知通径|PQ|=,|F1F2|=2c,|QF1|=,∵∠PF2Q=90°,∴2(+4c2)=,∴b4=4a2c2∵c2=a2+b2,∴c4﹣6a2c2+a4=0,∴e4﹣6e2+1=0∴e2=3+2或e2=3﹣2(舍去)∴e=+1.故选B.8.已知正方体ABCD﹣A1B1C1D1,点E,F,G分别是线段B1B,AB和A1C上的动点,观察直线CE与D1F,CE与D1G.给出下列结论:①对于任意给定的点E,存在点F,使得D1F⊥CE;②对于任意给定的点F,存在点E,使得CE⊥D1F;③对于任意给定的点E,存在点G,使得D1G⊥CE;④对于任意给定的点G,存在点E,使得CE⊥D1G.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个【考点】空间中直线与直线之间的位置关系.【分析】根据直线与直线、直线与平面的位置关系,分别分析选项,利用排除法能得出结论.【解答】解:①只有D1F⊥平面BCC1B1,即D1F⊥平面ADD1A1时,才能满足对于任意给定的点E,存在点F,使得D1F⊥CE,∵过D1点于平面DD1A1A垂直的直线只有一条D1C1,而D1C1∥AB,∴①错误;②当点E与B1重合时,CE⊥AB,且CE⊥AD1,∴CE⊥平面ABD1,∵对于任意给定的点F,都有D1F⊂平面ABD1,∴对于任意给定的点F,存在点E,使得CE⊥D1F,∴②正确;③只有CE垂直D1G在平面BCC1B1中的射影时,D1G⊥CE,∴③正确;④只有CE⊥平面A1CD1时,④才正确,∵过C点的平面A1CD1的垂线与BB1无交点,∴④错误.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.某校高一年级三个班共有学生120名,这三个班的男、女生人数如下表.已知在全年级学生中随机抽取1人,抽到二班女生的概率是0.2.则x=24;现用分层抽样的方法在全年级抽取30名学生,则应在三班抽取的学生人数为9.一班二班三班女生人数20xy男生人数2020z【考点】分层抽样方法.【分析】由于每个个体被抽到的概率都相等,由=0.2,可得得x的值.先求出三班总人数为36,用分层抽样的方法在全年级抽取30名学生,求出每个学生被抽到的概率为,用三班总人数乘以此概率,即得所求.【解答】解:由题意可得=0。2,解得x=24.三班总人数为120﹣20﹣20﹣24﹣20=36,用分层抽样的方法在全年级抽取30名学生,每个学生被抽到的概率为=,故应从三班抽取的人数为36×=9,故答案为24;9.10.双曲线的离心率等于2;渐近线方程为y=x.【考点】双曲线的简单性质.【分析】在双曲线的标准方程中,分别求出a,b,c,再由离心率和渐近线的定义进行求解.【解答】解:双曲线中,a=2,b=2,c==4,∴e===2.渐近线方程为:y=±=x.故答案为:2,y=x.11.执行如图所示的程序框图,输出的s值为.【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的i,s的值,当i=4时,不满足条件i<4,退出循环,输出s的值为.【解答】解:模拟执行程序,可得i=0,s=3满足条件i<4,执行循环体,i=1,s=满足条件i<4,执行循环体,i=2,s=﹣满足条件i<4,执行循环体,i=3,s=3满足条件i<4,执行循环体,i=4,s=不满足条件i<4,退出循环,输出s的值为.故答案为:.12.在某次摸底考试中,随机抽取100个人的成绩频率分布直方图如图,若参加考试的共有4000人,那么分数在90分以上的人数约为2600人,根据频率分布直方图估计此次考试成绩的中位数为97.5.【考点】频率分布直方图.【分析】由频率分布直方图的性质求出分数在90分以上的频率,由此能求出分数在90分以上的人数,根据频率分布直方图能估计此次考试成绩的中位数.【解答】解:由频率分布直方图的性质得:分数在90分以上的频率为:1﹣(0.005+0.0125)×20=0。65,∴分数在90分以上的人数约为:0。65×4000=2600.由频率分布直方图知分数在90分以下的频率为(0.005+0.0125)×20=0.35,分数在[90,110)的频率为:0.02×20=0。4,∴根据频率分布直方图估计此次考试成绩的中位数为:90+=97。5.故答案为:2600,97。5.13.抛物线y2=4x的焦点为F,经过F的直线与抛物线在x轴上方的部分相交于点A,与准线l交于点B,且AK⊥l于K,如果|AF|=|BF|,那么△AKF的面积是4.【考点】抛物线的简单性质.【分析】先根据抛物线方程求出焦点坐标和准线方程,运用抛物线的定义和条件可得△AKF为正三角形,F到l的距离为d=2,结合中位线定理,可得|AK|=4,根据正三角形的面积公式可得到答案.【解答】解:抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,由抛物线的定义可得|AF|=|AK|,由直角三角形的斜边上的中线等于斜边的一半,可得|FK|=|AF|,即有△AKF为正三角形,由F到l的距离为d=2,则|AK|=4,△AKF的面积是×16=4.故答案为:4.14.平面内到定点F(0,1)和定直线l:y=﹣1的距离之和等于4的动点的轨迹为曲线C.关于曲线C的几何性质,给出下列三个结论:①曲线C关于y轴对称;②若点P(x,y)在曲线C上,则|y|≤2;③若点P在曲线C上,则1≤|PF|≤4.其中,所有正确结论的序号是①②③.【考点】轨迹方程.【分析】设出曲线上的点的坐标,求出曲线方程,画出图象,即可判断选项的正误.【解答】解:设P(x,y)是曲线C上的任意一点,因为曲线C是平面内到定点F(0,1)和定直线l:y=﹣1的距离之和等于4的点的轨迹,所以|PF|+|y+1|=4.即+|y+1|=4,解得y≥﹣1时,y=2﹣x2,当y<﹣1时,y=x2﹣2;显然①曲线C关于y轴对称;正确.②若点P(x,y)在曲线C上,则|y|≤2;正确.③若点P在曲线C上,|PF|+|y+1|=4,|y|≤2,则1≤|PF|≤4.正确.故答案为:①②③.三、解答题:本大题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程.15.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:学生A1A2A3A4A5数学8991939597物理8789899293(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.【考点】列举法计算基本事件数及事件发生的概率;极差、方差与标准差.【分析】(Ⅰ)结合图表,由平均值和方差的定义可得答案;(Ⅱ)列举可得5名学生中选2人包含基本事件有共10个,事件A包含基本事件有7个,由古典概型的公式可得答案.【解答】解:(Ⅰ)5名学生数学成绩的平均分为:5名学生数学成绩的方差为:5名学生物理成绩的平均分为:5名学生物理成绩的方差为:因为样本的数学成绩方差比物理成绩方差大,所以,估计高三(1)班总体物理成绩比数学成绩稳定.(Ⅱ)设选中的学生中至少有一个物理成绩高于90分为事件A,5名学生中选2人包含基本事件有:A1A2,A1A3,A1A4,A1A5,A2A3,A2A4,A2A5,A3A4,A3A5,A4A5,共10个.事件A包含基本事件有:A1A4,A1A5,A2A4,A2A5,A3A4,A3A5,A4A5,共7个。所以,5名学生中选2人,选中的学生中至少有一个物理成绩高于90分的概率为.16.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(1)体育成绩大于或等于70分的学生常被称为“体育良好”,已知该校高一年级有1000名学生,试估计高一全校中“体育良好”的学生人数;(2)为分析学生平时的体育活动情况,现从体积成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,当数据a,b,c的方差s2最小时,写出a,b,c的值.(结论不要求证明)(注:s2=[(x)2+(x2﹣)2+…+(x)2],其中为数据x1,x2,…,xn的平均数)【考点】极差、方差与标准差;频率分布折线图、密度曲线;列举法计算基本事件数及事件发生的概率.【分析】(1)由折线图求出样本中体育成绩大于或等于70分的学生人数,由此能求出该校高一年级学生中,“体育良好”的学生人数.(2)设“至少有1人体育成绩在[60,70)”为事件A,由对立事件概率计算公式能求出至少有1人体育成绩在[60,70)的概率.(3)当数据a,b,c的方差s2最小时,a,b,c的值分别是79,84,90或79,85,90.【解答】解:(1)由折线图得样本中体育成绩大于或等于70分的学生有30人,∴该校高一年级学生中,“体育良好”的学生人数大约有:1000×=750人.(2)设“至少有1人体育成绩在[60,70)”为事件A,由题意,得P(A)=1﹣=1﹣,∴至少有1人体育成绩在[60,70)的概率是.(3)∵甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,∴当数据a,b,c的方差s2最小时,a,b,c的值分别是79,84,90或79,85,90.17.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=CB=CC1=2,E是AB中点.(Ⅰ)求证:AB1⊥平面A1CE;(Ⅱ)求直线A1C1与平面A1CE所成角的正弦值.【考点】直线与平面垂直的判定;直线与平面所成的角.【分析】(Ⅰ)由ABC﹣A1B1C1是直三棱柱,可知CC1⊥AC,CC1⊥BC,∠ACB=90°,AC⊥BC.建立空间直角坐标系C﹣xyz.则A,B1,E,A1,可得,,,可知,根据,,推断出AB1⊥CE,AB1⊥CA1,根据线面垂直的判定定理可知AB1⊥平面A1CE.(Ⅱ)由(Ⅰ)知是平面A1CE的法向量,,进而利用向量数量积求得直线A1C1与平面A1CE所成角的正弦值【解答】(Ⅰ)证明:∵ABC﹣A1B1C1是直三棱柱,∴CC1⊥AC,CC1⊥BC,又∠ACB=90°,即AC⊥BC.如图所示,建立空间直角坐标系C﹣xyz.A(2,0,0),B1(0,2,2),E(1,1,0),A1(2,0,2),∴,,.又因为,,∴AB1⊥CE,AB1⊥CA1,AB1⊥平面A1CE.(Ⅱ)解:由(Ⅰ)知,是平面A1CE的法向量,,∴|cos<,>|==.设直线A1C1与平面A1CE所成的角为θ,则sinθ=|cos<,>|=.所以直线A1C1与平面A1CE所成角的正弦值为.18.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,点E是PB的中点,点F在边BC上移动.(Ⅰ)若F为BC中点,求证:EF∥平面PAC;(Ⅱ)求证:AE⊥PF;(Ⅲ)若二面角E﹣AF﹣B的余弦值等于,求的值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)证明EF∥PC即可得EF∥平面PAC.(Ⅱ)证明AE⊥平面PBC即可得AE⊥PF.(Ⅲ)如图以A为原点建立空间直角坐标系,A(0,0,0),B(0,2,0),P(0,0,2),E(0,1,1),F(m,2,0),求出平面AEF的一个法向量为,由二面角E﹣AF﹣B的余弦值等于,求出m,即可【解答】解:(Ⅰ)证明:在△PBC中,因为点E是PB中点,点F是BC中点,所以EF∥PC.…。.又因为EF⊄平面PAC,PC⊂平面PAC,….所以EF∥平面PAC.…。。(Ⅱ)证明:因为底面ABCD是正方形,所以BC⊥AB.因为PA⊥底面ABCD,所以PA⊥BC.PA∩AB=A所以BC⊥平面PAB.….。由于AE⊂平面PAB,所以BC⊥AE.由已知PA=AB,点E是PB的中点,所以AE⊥PB.….。又因为PB∩BC=B,所以AE⊥平面PBC.…..因为PF⊂平面PBC,所以AE⊥PF.….。(Ⅲ)如图以A为原点建立空间直角坐标系,A(0,0,0),B(0,2,0),P(0,0,2),E(0,1,1),F(m,2,0).于是,.设平面AEF的一个法向量为=(p,q,r),由得取p=2,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 在线教育广告精准投放合同(2篇)
- 花卉行业销售总监聘任合同
- 河道整治挖机租赁合同
- 市政道路路基防护施工合同
- 2024戊方提供品牌策划合同
- 2024版美容店店铺租赁合同书
- 酒店多功能会议室装修合同
- 微电影制作拍摄进度保证协议
- 酒店室外景观施工合同
- 林地租赁合同:风力发电项目
- 器乐专业课教学大纲(古筝)
- (完整版)EORTC生命质量测定量表QLQ-C30(V3.0)
- 超级充电综合站及配套设施建设项目可行性研究报告
- 2023年核心素养下的初中历史教学有效性策略
- 眼科学 眼外伤(课件)
- 索具螺旋扣规格花篮螺丝
- GB/T 9364.4-2016小型熔断器第4部分:通用模件熔断体(UMF)穿孔式和表面贴装式
- GB/T 21709.1-2008针灸技术操作规范第1部分:艾灸
- GB/T 16288-2008塑料制品的标志
- 住院医师规范化培训临床实践能力结业考核专科技能操作评分表(耳鼻咽喉科)气管切开术
- DBJ-T 13-195-2022 烧结煤矸石实心砖和多孔砖(砌块) 应用技术标准
评论
0/150
提交评论