版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
因子分析(FactAnalysis)因子分析是多元统计技术的一个分支,其目的是浓缩数据。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个假想变量(公共因子)来表示基本的数据结构。这些假想变量能够反映原来众多的观测变量所代表的主要信息,并解释这些观测变量之间的相互依存关系,将这些假想变量称为基础变量,即因子(Factors)。因子分析就是研究如何以最少的信息丢失把众多的观测变量浓缩为少数几个因子的过程。两个主要应用寻求基本结构、检验结构效度——在多元分析中,经常碰到观测变量很多且变量之间存在着较强的相关关系的情形,这不仅给问题的分析和描述带来一定困难,而且在使用某些统计方法时会出现问题。数据简化——通过因子分析把一组观测变量化为少数几个因子后,可以进一步将原始观测变量的信息转换成这些因子的因子值,然后用这些因子代替原来的观测变量进行其他统计分析,如回归分析、路径分析、判别分析和聚类分析,利用因子值也可以直接对样本进行分类和综合评价。因子分析的基本假设,是因子隐含在许多可观察的现实事物的背后。虽然难以直接测量,但是可以从复杂的外在现象中计算、估计。其数学原理的共变的抽取。也就是说,受到同一个因子影响的测量分数,共同相关的部分就是因子所在的部分。因子的提取也是根据共同相关的得分而决定。一般说来,研究者事先对观测数据背后存在多少个因子、因子如何抽取、因子的内容以及变量的分类等一无所知,未有任何事前的假定,而由因子分析的过程来决定。这种类型的应用称为探索性因子分析(EFA),因子分析的大部分应用都属于这种类型。探索性因子分析(ExploratoryFactorAnalysis;EFA)有的情况下,研究者根据某些理论或其他先验知识可能对因子的个数或因子的结构作出假设,因子分析也可以用来检验这个假设,作为证实假设的工具,这种类型的应用称为证实性(CFA)因子分析。证实性因子分析(ConfirmatoryFactorAnalysis;CFA)探索性因子分析步骤第一步:通过共变关系的分解,找出最低限度的主要成分(principalcomponent)或共同因子(commonfactor)。第二步:探讨这些主成分或共同因子与个别的变量的关系,找出观测变量与其相对应因子的强度,即因子负荷值或负载值(factorloading),以说明因子与所属的观察变量的关系与强度。第三步:决定因子的内容,为因子取一个合适的名字。因子分析的条件
因子分析的变量都必须是连续变量,符合线性相关的假设。顺序与类别变量不得使用因子分析简化结构。抽样的过程必须具有随机性,并具有一定的规模。如果研究的总体具有较高的同质性(如学生样本),变量数目不多,样本数可以介于100~200之间;Gorsuch(1983)建议样本数最少为变量数的5倍,且大于100。因子分析的原理1.因子分析模型因子分析模型在形式上和多元回归模型相似,每个观测变量由一组因子的线性组合来表示。上式中,F1,F2,……Fm叫公共因子(Commonfactors),它们是各个观测变量所共有的因子,解释了变量之间的相关。Ui称为特殊因子(Uniquefactor),它是每个观测变量所特有的因子,相当于多元回归中的残差项,表示该变量不能被公共因子所解释的部分。aim称为因子负载(Factorloading),它是第i个变量在m个公共因子上的负载,相当于多元回归分析中的标准回归系数。因子分析的数学原理(相关矩阵)因子分析的基础是变量之间的相关。分析相关矩阵代表的意义。如果“自尊”用Y来表示,其他10个选项的分数以X1到X10表示,则Y的得分可以用以下数学模型预测得到:Y=b1X1+b2X2+b3X3+……+b10X10+U因子分析中的因子负载(负荷)因子负荷是因子分析中的最重要的统计量,它是连接观测变量和公共因子之间的纽带。因子负荷不仅表示观测变量如何由因子线性表示的,而且也反映了因子和变量之间的相关关系。假如我们得到了5个观测变量、2个公共因子的情形:X1=0.9562F1+0.2012F2+0.2126U1X2=0.8735F1+0.2896F2+0.3913U2X3=0.1744F1+0.8972F2+0.4057U3X4=0.5675F1+0.7586F2+0.3202U4X5=0.8562F1+0.3315F2+0.3962U5可以看出,公共因子F1与变量X1、X2、X4、X5关系密切,它主要代表了这些变量的信息。F2与变量X3、X4关系密切,它主要代表了这两个变量的信息。F1F2hi2X10.95620.20120.9548X20.87350.28960.8469X30.17440.89720.8354X40.56750.75860.8975X50.85620.33150.8430hi2=ai12+ai22+……+aim2(i=1,2,……p)表明F1和F2两个因子解释了X1变量信息的95.48%。公共因子方差(Communality),或共同度指观测变量方差中由公共因子决定的比例。变量的方差由两部分组成,一部分由公共因子决定,一部分由特殊因子决定(即残差)。公共因子方差表示原始变量方差能被公共因子所解释的部分,共同度越大,变量能被因子说明的程度越高。一个原始变量的共同度等于因子负荷矩阵中该变量所在行的所有元素的平方和。对上例,计算出每个变量的公共因子方差为:共同度这个指标以观测量为中心,其意义在于说明如果用公共因子替代观测变量后,原来的每个变量的信息被保留的程度。因子贡献(Contributions)特征值(eigenvalue)一个因子的特征值等于因子负荷矩阵中该变量所在列的所有元素的平方和,表示该因子所能解释的方差。因子Fj所能解释的方差所占的比例叫做该因子的贡献率。其计算公式为:
F1F2hi2X10.95620.20120.9548X20.87350.28960.8469X30.17440.89720.8354X40.56750.75860.8975X50.85620.33150.8430特征值:2.76281.614684Fj贡献率:0.5520.323表明第一个因子F1解释了所有变量总方差的55%,第二个变量解释了上述总方差的32%,两个因子一共解释了总方差的87%。因子分析的主要步骤:第一步:计算所有变量的相关矩阵。相关矩阵是因子分析直接要用的数据,根据相关矩阵还应该进一步判断应用因子分析方法是否合适。第二步:提取因子。这一步是确定因子的个数和求因子解的方法。第三步:是进行因子旋转。这一步的目的是通过坐标轴变换使因子解的实际意义更容易解释。第四步:计算因子值。因子值是各个因子在每个观测量上的得分,有了因子值可以在其他的分析中使用这些因子。前提是观测变量之间应该有较强的相关关系。如果变量之间的相关程度很小的话,他们不可能共享因子。所以,计算出相关矩阵后,应对相关矩阵进行检验,如果相关矩阵的大部
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购合同轻松实现数字化转型3篇
- 采购合同文件3篇
- 采购合同管理的信息化解决方案3篇
- 采购合同协议中的税收政策3篇
- 采购合同类型的编写规范解析3篇
- 采购合同评审表的奥秘3篇
- 采购合同中的供应链在线绩效评估3篇
- 采购合同评审流程的实践经验3篇
- 2024年消防水池质量保证合同3篇
- 采购合同中的采购计划编制指南详解3篇
- 财务总监绩效考核表
- 肾穿刺的适应症及围术期管理考核评分表
- 数字孪生水利工程建设技术导则(试行)
- 福费廷业务流程
- 地下室基坑开挖及边坡支护方案土钉墙 喷锚支护
- 初中毕业证书怎么查询电子版
- 垃圾焚烧发电厂消防系统安装施工方案
- 工艺管廊架施工方案
- 酒店装修工程预算表EXCEL模板(推荐)
- 2023行政执法人员考试题库及答案
- NY 5052-2001无公害食品海水养殖用水水质
评论
0/150
提交评论