广西壮族自治区柳州市三江侗族自治县洋溪乡中学高二数学文下学期期末试卷含解析_第1页
广西壮族自治区柳州市三江侗族自治县洋溪乡中学高二数学文下学期期末试卷含解析_第2页
广西壮族自治区柳州市三江侗族自治县洋溪乡中学高二数学文下学期期末试卷含解析_第3页
广西壮族自治区柳州市三江侗族自治县洋溪乡中学高二数学文下学期期末试卷含解析_第4页
广西壮族自治区柳州市三江侗族自治县洋溪乡中学高二数学文下学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区柳州市三江侗族自治县洋溪乡中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过M(-2,0)的直线m与椭圆+y2=1交于P1、P2两点,线段P1P2的中点为P,设直线m的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2的值为 ()A.2 B.-2 C. D.-参考答案:D略2.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,。)A.4.56% B.13.59% C.27.18% D.31.74%参考答案:B试题分析:由题意故选B.考点:正态分布3.设Sn是等差数列{an}的前n项和,若=(

)A.1 B.﹣1 C.2 D.参考答案:A【考点】等差数列的性质.【专题】计算题.【分析】充分利用等差数列前n项和与某些特殊项之间的关系解题.【解答】解:设等差数列{an}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.【点评】本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{an}的前n项和为Sn,则有如下关系S2n﹣1=(2n﹣1)an.4.已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|?|PF2|=()A.2 B.4 C.6 D.8参考答案:B【考点】双曲线的定义;余弦定理.【分析】解法1,利用余弦定理及双曲线的定义,解方程求|PF1|?|PF2|的值.解法2,由焦点三角形面积公式和另一种方法求得的三角形面积相等,解出|PF1|?|PF2|的值.【解答】解:法1.由双曲线方程得a=1,b=1,c=,由余弦定理得cos∠F1PF2=

∴|PF1|?|PF2|=4.法2;

由焦点三角形面积公式得:∴|PF1|?|PF2|=4;故选B.5.已知盒中有10个灯泡,其中8个正品,2个次品。需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止。设ξ为取出的次数,求P(ξ=4)=A.

B.

C.

D.参考答案:B6.如果函数在区间上是增函数,则实数的取值范围是A

B

C

D参考答案:C7.已知∥,则的值为(

)A.2

B.

0

C.

D.-2参考答案:B略8.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是

(

)

A.至多有一次中靶

B.两次都中靶

C.两次都不中靶

D.只有一次中靶参考答案:C略9.不等式的解集为(

)A.

B.

C.

D.参考答案:C10.双曲线:﹣=1的离心率为m,记函数y=x2与y=mx的图象所围成的阴影部分的面积为S(如图所示),任取x∈[0,2],y∈[0,4],则点(x,y)恰好落在阴影区域内的概率为()A. B. C. D.参考答案:C【考点】双曲线的简单性质.【分析】根据双曲线的性质求出离心率m,求出交点坐标,结合积分的应用求出阴影部分的面积,利用几何概型的概率公式进行计算即可.【解答】解:由﹣=1得a2=4,b2=12,则c2=4+12=16,即a=2,c=4,则离心率为m===2,则直线y=mx=2x代入y=x2,得x2=2x,则x=0或x=2,则阴影部分的面积S=∫(2x﹣x2)dx=(x2﹣x3)|=4﹣=,∵x∈[0,2],y∈[0,4],∴对应矩形的面积S=2×4=8,则则点(x,y)恰好落在阴影区域内的概率P==,故选:C二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=,则的值为

.参考答案:12.过点(1,2),且在两坐标轴上截距相等的直线方程

参考答案:或13.将函数的图象向左平移一个单位,再向下平移一个单位,得到函数_____________参考答案:略14.在正三棱柱ABC﹣A1B1C1中,各棱长均相等,BC1与B1C的交点为D,则AD与平面BB1C1C所成角的大小是.参考答案:60°考点:直线与平面所成的角.专题:计算题;空间角.分析:本题考查的知识点是线面角,由已知中侧棱垂直于底面,我们过D点做BC的垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.解答:解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成的角.设各棱长为1,则AE=,DE=,∴tan∠ADE==,∴∠ADE=60°.故答案为:60°.点评:求直线和平面所成的角时,应注意的问题是:(1)先判断直线和平面的位置关系.(2)当直线和平面斜交时,常用以下步骤:①构造﹣﹣作出或找到斜线与射影所成的角;②设定﹣﹣论证所作或找到的角为所求的角;③计算﹣﹣常用解三角形的方法求角;④结论﹣﹣点明斜线和平面所成的角的值.15.已知圆的参数方程(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,则直线与圆的交点的直角坐标为.参考答案:(1,1),(-1,1)16.已知x与y之间的一组数据:x0123y1357则y与x的线性回归方程为y=bx+a必过点

.参考答案:样本点的中心=(1.5,4)17.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于____________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形(1)

求证:AD^BC(2)

求二面角B-AC-D的大小(3)

在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由。

参考答案:解法一:(1)

方法一:作AH^面BCD于H,连DH。AB^BDTHB^BD,又AD=,BD=1\AB==BC=AC

\BD^DC又BD=CD,则BHCD是正方形,则DH^BC\AD^BC方法二:取BC的中点O,连AO、DO则有AO^BC,DO^BC,\BC^面AOD\BC^AD(2)

作BM^AC于M,作MN^AC交AD于N,则DBMN就是二面角B-AC-D的平面角,因为AB=AC=BC=\M是AC的中点,且MN¤¤CD,则BM=,MN=CD=,BN=AD=,由余弦定理可求得cosDBMN=\DBMN=arccos(3)

设E是所求的点,作EF^CH于F,连FD。则EF¤¤AH,\EF^面BCD,DEDF就是ED与面BCD所成的角,则DEDF=30°。设EF=x,易得AH=HC=1,则CF=x,FD=,\tanDEDF===解得x=,则CE=x=1故线段AC上存在E点,且CE=1时,ED与面BCD成30°角。解法二:此题也可用空间向量求解,解答略19.已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点分别是F1,F2,过点F1的直线l交椭圆C于E,G两点,且△EGF2的周长为4(Ⅰ)求椭圆C的方程;

(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,设P为椭圆上一点,且满足(O为坐标原点),当时,求实数t的取值范围.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(Ⅰ)根据椭圆的离心率找出a与b的关系式,再根据△EGF2的周长求出a与b的值,即可确定出椭圆C方程;(Ⅱ)根据题意得到直线AB斜率存在,设出直线AB方程,以及A(x1,y1),B(x2,y2),P(x,y),联立直线AB解析式与椭圆方程,消去y得到关于x的一元二次方程,利用韦达定理表示出两根之和与两根之积,根据不等式求出k的范围,进而确定出t的范围.【解答】解:(Ⅰ)由题意知椭圆的离心率e==,∴e2===,即a2=2b2,又△EGF2的周长为4,即4a=4,∴a2=2,b2=1.∴椭圆C的方程为+y2=1;(Ⅱ)由题意知直线AB的斜率存在,即t≠0.设直线AB的方程为y=k(x﹣2),A(x1,y1),B(x2,y2),P(x,y),由,得(1+2k2)x2﹣8k2x+8k2﹣2=0,由△=64k4﹣4(2k2+1)(8k2﹣2)>0,得k2<.根据韦达定理得:x1+x2=,x1x2=,∵+=t,∴(x1+x2,y1+y2)=t(x,y),x==,y==[k(x1+x2)﹣4k]=,∵点P在椭圆C上,∴16k2=t2(1+2k2),∵|﹣|<,∴|x1﹣x2|<,∴(1+k2)[(x1+x2)2﹣4x1x2]<,∴(1+k2)[﹣4?]<,∴(4k2﹣1)(14k2+13)>0,∴k2>,∴<k2<.∵16k2=t2(1+2k2),∴t2==8﹣,又<1+2k2<2,∴<t2=8﹣<4,∴﹣2<t<﹣或<t<2,∴实数t的取值范围为(﹣2,﹣)∪(,2).20.在△ABC中,B=45°,AC=,cosC=,求BC的长.参考答案:【考点】余弦定理;正弦定理.【专题】解三角形.【分析】如图所示,过A作AD⊥BC,可得出三角形ABD为等腰直角三角形,即AD=BD,在直角三角形ADC中,由cosC的值求出sinC的值,利用正弦定理求出AD的长,进而利用勾股定理求出DC的长,由BD+DC即可求出BC的长.【解答】解:如图所示,过A作AD⊥BC,在Rt△ABD中,B=45°,∴△ABD为等腰直角三角形,即AD=BD,在Rt△ADC中,cosC=,∴sinC==,由正弦定理=,即AD==,利用勾股定理得:DC==2,则BC=BD+DC=AD+DC=3.【点评】此题考查了正弦定理,同角三角函数间的基本关系,熟练掌握定理是解本题的关键.21.(1)设a,b是两个不相等的正数,若+=1,用综合法证明:a+b>4(2)已知a>b>c,且a+b+c=0,用分析法证明:<.参考答案:【考点】R8:综合法与分析法(选修).【分析】(1)利用综合法进行证明即可.(2)利用分析法进行证明.【解答】解:(1)因为a>0,b>0,且a≠b,所以a+b=(a+b)()=1+1+>2+2=4.所以a+b>4

(2)因为a>b>c,且a+b+c=0,所以a>0,c<0,要证明原不等式成立,只需证明<a,即证b2﹣ac<3a2,又b=﹣(a+c),从而只需证明(a+c)2﹣ac<3a2,即证(a﹣c)(2a+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论