版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市市第十中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.执行如右图所示的程序框图,输出的值为
A.
B.
C.4
D.5
参考答案:A略2.棱长为的正方体内切一球,该球的半径为
A、
B、
C、
D、参考答案:A3.已知等比数列的公比,其前项和,则等于 . . . .参考答案:.;故选.4.已知命题p:,,则为(
)A.,
B.,C., D.,参考答案:B5.抛物线的焦点坐标为().A.
B.
C.
D.
参考答案:D略6.设全集是实数,,则(
)A.
B.
C.
D.参考答案:A略7.当时,下面的程序段输出的结果是(
)
A.
B.
C.
D.参考答案:D8.用“辗转相除法”求得和的最大公约数是(
)A.
B.
C.
D.
参考答案:D9.
已知函数上的奇函数,当x>0时,的大致图象为参考答案:B10.已知,若是的充分不必要条件,则实数的取值范围为()A.(-∞,3]
B.[2,3]
C.(2,3]
D.(2,3)参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.为了判断高中学生的文理科选修是否与性别有关,随机调查了50名学生,得到如标2×2列联表:
理科文科总计男20525女101525总计302050那么,认为“高中学生的文理科选修与性别有关系”犯错误的概率不超过
.参考答案:0.005【考点】BO:独立性检验的应用.【分析】利用公式求得K2,与临界值比较,即可得到结论.【解答】解:K2=≈8.333>7.879,∴认为“高中学生的文理科选修与性别有关系”犯错误的概率不超过0.005.故答案为:0.005.【点评】本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.12.已知棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是B1C1和C1D1的中点,点A1到平面DBEF的距离为________________.参考答案:1【分析】以D点为原点,的方向分别为轴建立空间直角坐标系,求出各顶点的坐标,进而求出平面的法向量,代入向量点到平面的距离公式,即可求解。【详解】以为坐标原点,,,的方向分别为,,轴的正方向,建立空间直角坐标系,则,,,所以,,,设
是平面的法向量,则,即,令,可得,故,设点在平面上的射影为,连接,则是平面的斜线段,所以点到平面的距离.【点睛】本题主要考查了空间向量在求解距离中的应用,对于利用空间向量求解点到平面的距离的步骤通常为:①求平面的法向量;②求斜线段对应的向量在法向量上的投影的绝对值,即为点到平面的距离.空间中其他距离问题一般都可转化为点到平面的距离求解.着重考查了推理与运算能力,属于基础题.13.已知实数x,y满足不等式组则的最大值是_____.参考答案:6【分析】作出不等式组对应的平面区域,设z=2x﹣y,利用目标函数的几何意义,利用数形结合确定z的最大值.【详解】设z=2x﹣y,则y=2x﹣z,作出不等式对应的平面区域(阴影部分)如图:平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C(3,0)时,直线y=2x﹣z的截距最小,此时z最大.z的最大值为z=2×3=6,.故答案为:6【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.若,则_______________.参考答案:15.函数f(x)=|log3x|在区间[a,b]上的值域为[0,1]则b-a的最小值为_______参考答案:2/3略16.如图,二面角的大小是60°,线段.,与所成的角为30°.则与平面所成的角的正弦值是
.参考答案:略17.
已知等差数列{an}的公差d不为0,等比数列{bn}的公比q是小于1的正有理数。若a1=d,b1=d2,且是正整数,则q等于_____________.参考答案:解析:因为,故由已知条件知道:1+q+q2为,其中m为正整数。令,则。由于q是小于1的正有理数,所以,即5≤m≤13且是某个有理数的平方,由此可知。
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)设,若,使得成立,求a的取值范围参考答案:(Ⅰ)由题意知定义域为,令,得当时,则,单调递减当时,则,单调递增综上可得:的单调减区间为的单调增区间为(Ⅱ)由,得令,则当时,,单调递减当时,,单调递增,即.故令,,令,得,时,,单调递减当时,,单调递增故的取值范围19.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm之间的概率;(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.参考答案:【考点】频率分布直方图.【分析】(1)由频率分步直方图知样本中男生人数为2+5+13+14+2+4,全校以10%的比例对全校700名学生按性别进行抽样检查,知道每个个体被抽到的概率是0.1,得到分层抽样比例为10%估计全校男生人数.(2)由图可知样本中身高在170~185cm之间的学生有14+13+4+3+1,样本容量为70,得到样本中学生身高在170~185cm之间的频率.用样本的频率来估计总体中学生身高在170~180cm之间的概率.(3)由题意知本题是一个古典概型,通过列举法看出试验发生包含的所有事件数,再从这些事件中找出满足条件的事件数,根据古典概型公式,得到结果.【解答】解:(Ⅰ)样本中男生人数为2+5+13+14+2+4=40,由分层抽样比例为10%估计全校男生人数为=400;(Ⅱ)∵样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,样本容量为70,∴样本中学生身高在170~185cm之间的频率,故可估计该校学生身高在170~180cm之间的概率p=0.5;(Ⅲ)样本中身高在180~185cm之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190cm之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:∴从样本中身高在180~190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185~190cm之间的可能结果数为9,∴所求概率p2=.20.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成。已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米。(1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?参考答案:解、⑴由,知⑵当且仅当时取等号∴要使公园所占面积最小,休闲区A1B1C1D1的长为100米、宽为40米.21.如图,在四棱锥P-ABCD中,是等边三角形,,,.(Ⅰ)求证:(Ⅱ)若平面平面ABCD,,求三棱锥的体积参考答案:证明:(Ⅰ)取的中点,连接为等边三角形,,四边形为矩形,平面又平面,(Ⅱ)由(Ⅰ)知又平面平面,平面平面,平面平面,为三棱柱的高为等边三角形,,得,,22.已知奇函数y=f(x)定义域是R,当x≥0时,f(x)=x(1﹣x).(1)求出函数y=f(x)的解析式;(2)写出函数y=f(x)的单调递增区间.(不用证明,只需直接写出递增区间即可)参考答案:【考点】函数奇偶性的性质;函数的单调性及单调区间.【分析】(1)当x<0时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学综合练习试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规押题练习试题B卷含答案
- 重庆市西南大学附中2024-2025学年高一上定时检测(一)语文试题含答案
- 2024年度xx村监测对象风险消除民主评议会议记录
- 湖南省长沙市长郡郡维中学2022-2023学年九年级上学期入学英语试卷(含答案)
- 2024年长沙市事业单位招聘计算机岗位专业知识试题
- 2024年培训学校业务外包协议
- 2024年工程咨询服务具体协议样式
- 2024医疗销售企业合作协议样本
- 2024房屋建筑施工劳务协议详例
- 养老机构(养老院)全套服务管理实用手册
- 企业文化管理第八章企业文化的比较与借鉴
- WST311-2023《医院隔离技术标准》
- 《缕书香伴我同行》课件
- 建设项目竣工环境保护验收管理办法
- 100道解方程 计算题
- 赛事承办服务投标方案(技术方案)
- 概率论(华南农业大学)智慧树知到课后章节答案2023年下华南农业大学
- 上海中考英语专项练习-动词的时态-练习卷一和参考答案
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
- 我们的出行方式 (教学设计)2022-2023学年综合实践活动四年级上册 全国通用
评论
0/150
提交评论