黑龙江省安达市田家炳高级中学2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第1页
黑龙江省安达市田家炳高级中学2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第2页
黑龙江省安达市田家炳高级中学2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第3页
黑龙江省安达市田家炳高级中学2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第4页
黑龙江省安达市田家炳高级中学2022-2023学年数学高二第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点坐标为A.(0,2) B.(2,0) C.(0,4) D.(4,0)2.若函数存在单调递增区间,则实数的值可以为()A. B. C. D.3.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为A. B. C. D.4.已知为虚数单位,复数满足,则的共轭复数()A. B. C. D.5.将函数的图象向左平移个单位,得到函数的图象,若在上为增函数,则的最大值为()A.2 B.4 C.6 D.86.已知,记,则M与N的大小关系是()A. B. C. D.不能确定7.将函数的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则的一个可能取值为A. B. C.0 D.8.已知圆(x+1)2+y2=12的圆心为C,点P是直线l:mx-y-5m+4=0上的点,若圆C上存在点Q使∠CPQ=A.1-306C.0,1259.某产品的广告费用万元与销售额万元的统计数据如下表:根据以上数据可得回归直线方程,其中,据此模型预报广告费用为6万元时,销售额为65.5万元,则,的值为()A., B.,C., D.,10.将4名志愿者分别安排到火车站、轮渡码头、机场工作,要求每一个地方至少安排一名志愿者,其中甲、乙两名志愿者不安排在同一个地方工作,则不同的安排方法共有A.24种 B.30种 C.32种 D.36种11.若,则等于()A.3或4 B.4 C.5或6 D.812.设随机变量,且,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若随机变量的分布列如表所示,则______.01Pa14.若,则=______.15.将5个数学竞赛名额分配给3个不同的班级,其中甲、乙两个班至少各有1个名额,则不同的分配方案和数有__________.16.在数列中,若,,则该数列的通项________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求曲线在点处的切线方程;(2)求的单调区间;(3)若在区间上恒成立,求实数a的取值范围.18.(12分)设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)如图,.分别为椭圆的左.右顶点,过点的直线与椭圆交于.两点.若,求直线的方程.19.(12分)已知函数.(1)若不等式的解集,求实数的值.(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.20.(12分)已知函数的最大值为4.(1)求实数的值;(2)若,求的最小值.21.(12分)已知函数,;.(1)求的最大值;(2)若对,总存在使得成立,求的取值范围;(3)证明不等式.22.(10分)某啤酒厂要将一批鲜啤酒用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,运费由厂家承担.若厂家恰能在约定日期(×月×日)将啤酒送到,则城市乙的销售商一次性支付给厂家40万元;若在约定日期前送到,每提前一天销售商将多支付给厂家2万;若在约定日期后送到,每迟到一天销售商将少支付给厂家2万元.为保证啤酒新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送.已知下表内的信息:汽车行驶路线在不堵车的情况下到达城市乙所需时间(天)在堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路1142公路2231(1)记汽车选择公路1运送啤酒时厂家获得的毛收入为X(单位:万元),求X的分布列和EX;(2)若,,选择哪条公路运送啤酒厂家获得的毛收人更多?(注:毛收入=销售商支付给厂家的费用-运费).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据抛物线标准方程求得,从而得焦点坐标.【详解】由题意,,∴焦点在轴正方向上,坐标为.故选A.【点睛】本题考查抛物线的标准方程,属于基础题.解题时要掌握抛物线四种标准方程形式.2、D【解析】

根据题意可知有解,再根据二次函数的性质分析即可.【详解】由题,若函数存在单调递增区间,则有解.当时显然有解.当时,,解得.因为四个选项中仅.故选:D【点睛】本题主要考查了利用导数分析函数单调区间的问题,需要判断出导数大于0有解,利用二次函数的判别式进行求解.属于中档题.3、B【解析】

构造函数,则得的单调性,再根据为奇函数得,转化不等式为,最后根据单调性性质解不等式.【详解】构造函数,则,所以在上单独递减,因为为奇函数,所以.因此不等式等价于,即,选B.【点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等4、A【解析】由,得,故选A.5、C【解析】,向左平移个单位,得到函数的图象,所以,因为,所以即的最大值为6,选C.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.由求增区间;由求减区间.6、B【解析】

作差并因式分解可得M-N=,由,∈(0,1)可作出判断.【详解】由题意可得M-N====,∵,b∈(0,1),∴(b-1)∈(-1,0),(-1)∈(-1,0),∴(b-1)(-1)>0,∴M>N

故选B.【点睛】本题考查作差法比较式子大小,涉及因式分解,属基础题.7、B【解析】将函数的图象沿轴向右平移个单位后,

得到函数的图象对应的函数解析式为再根据所得函数为偶函数,可得故的一个可能取值为:故选B.8、C【解析】

问题转化为C到直线l的距离d⩽4.【详解】如图所示:过P作圆C的切线PR,切点为R,则∠CPQ⩽∠CPR,∴sin60°⩽sin∴CPmin⩽4,则C到直线l∴|-m-0-5m+4|m2故选:C.【点睛】本题考查了直线与圆的位置关系,属中档题.9、C【解析】分析:根据回归直线过样本中心和条件中给出的预测值得到关于,的方程组,解方程组可得所求.详解:由题意得,又回归方程为,由题意得,解得.故选C.点睛:线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本数据中的参数.根据回归方程进行预测时,得到的数值只是一个估计值,解题时要注意这一点.10、B【解析】

利用间接法,即首先安排4人到三个地方工作的安排方法数N,再求出当甲、乙两名志愿者安排在同一个地方时的安排方法数n,于是得出答案N-n。【详解】先考虑安排4人到三个地方工作,先将4人分为三组,分组有C42种,再将这三组安排到三个地方工作,则安排4人到三个地方工作的安排方法数为当甲、乙两名志愿者安排在同一个地方时,则只有一个分组情况,此时,甲、乙两名志愿者安排在同一个地方工作的安排方法数为n=A因此,所求的不同安排方法数为N-n=36-6=30种,故选:B。【点睛】本题考查排列组合综合问题的求解,当问题分类情况较多或问题中带有“至少”时,宜用间接法来考查,即在总体中减去不符合条件的方法数,考查分析问题的能力和计算能力,属于中等题。11、D【解析】

根据排列数和组合数公式,化简,即可求出.【详解】解:由题意,根据排列数、组合数的公式,可得,,则,且,解得:.故选:D.【点睛】本题考查排列数和组合数公式的应用,以及对排列组合的理解,属于计算题.12、A【解析】

根据随机变量符合二项分布,根据二项分布的期望和方差公式得到关于,的方程组,注意两个方程之间的关系,把一个代入另一个,以整体思想来解决,求出的值,再求出的值,得到结果.【详解】解:随机变量,,,,①②把①代入②得,,故选:.【点睛】本题考查离散型随机变量的期望和方差,考查二项分布的期望和方差公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先由分布列,根据概率的性质求出,再求出期望,根据方差的计算公式,即可得出结果.【详解】由分布列可得:,解得,所以,因此,所以.故答案为:.【点睛】本题主要考查求离散型随机变量的方差,熟记计算公式即可,属于常考题型.14、365【解析】分析:令代入可知的值,令代入可求得的值,然后将两式相加可求得的值.详解:中,令代入可知令代入可得,除以相加除以2可得.即答案为365.点睛:本题主要考查的是二项展开式各项系数和,充分利用赋值法是解题的关键.15、10【解析】首先分给甲乙每班一个名额,余下的3个名额分到3个班,每班一个,有1中分配方法;一个班1个,一个班2个,一个班0个,有种分配方法;一个班3个,另外两个班0个有3种分配方法;据此可得,不同的分配方案和数有6+3+1=10种.16、【解析】

根据条件先判断数列类型,然后利用定义求解数列通项公式.【详解】因为,所以,所以是等差数列且公差,又,所以,所以,故答案为:.【点睛】本题考查等差数列的判断及通项求解,难度较易.常见的等差数列的判断方法有两种:定义法、等差中项法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)切线方程为.(2)当时,的单调增区间是和,单调减区间是;当时,的单调增区间是;当时,的单调增区间是和,单调减区间是.(1).【解析】试题分析:(1)求出a=1时的导数即此时切线的斜率,然后由点斜式求出切线方程即可;(2)对于含参数的单调性问题的关键时如何分类讨论,常以导数等于零时的根与区间端点的位置关系作为分类的标准,然后分别求每一种情况时的单调性;(1)恒成立问题常转化为最值计算问题,结合本题实际并由第二问可知,函数在区间[1,e]上只可能有极小值点,所以只需令区间端点对应的函数值小于等于零求解即可.试题解析:(1)∵a=1,∴f(x)=x2-4x+2lnx,∴f′(x)=(x>0),f(1)=-1,f′(1)=0,所以切线方程为y=-1.(2)f′(x)=(x>0),令f′(x)=0得x1=a,x2=1,当0<a<1时,在x∈(0,a)或x∈(1,+∞)时,f′(x)>0,在x∈(a,1)时,f′(x)<0,∴f(x)的单调递增区间为(0,a)和(1,+∞),单调递减区间为(a,1);当a=1时,f′(x)=≥0,∴f(x)的单调增区间为(0,+∞);当a>1时,在x∈(0,1)或x∈(a,+∞)时,f′(x)>0,在x∈(1,a)时,f′(x)<0,∴f(x)的单调增区间为(0,1)和(a,+∞),单调递减区间为(1,a).(1)由(2)可知,f(x)在区间[1,e]上只可能有极小值点,∴f(x)在区间[1,e]上的最大值必在区间端点取到,∴f(1)=1-2(a+1)≤0且f(e)=e2-2(a+1)e+2a≤0,解得a≥.考点:导数法求切线方程;‚求含参数的函数的单调性问题;ƒ恒成立问题求参数范围.【方法点睛】恒成立问题求参数范围常常将参数移到一边转化为函数最值问题即恒成立,即等价于.该解法的优点是不用讨论,但是当参数不易移到一边,或移到一边后另一边的函数值域不易求时,就不要移,而是将不等式的一边化为零即,由于此时函数含有参数,所以应讨论并求最值,从而求解.18、(1);(2)【解析】

(1)根据题意,得出及,求得的值,即可得到椭圆的标准方程;(2)由(1)设直线的方程为,联立方程组,根据根与系数的关系,求得,,再根据向量的数量积的运算,列出方程,求得的值,即可得到直线的方程.【详解】(1)因为椭圆的离心率为,所以,易得过右焦点且与轴垂直的直线被椭圆截得的线段长为,解得,,故椭圆的方程为;(2)由(1)知,右焦点的坐标为,于是可设直线的方程为,设,,由得,由韦达定理得,,又易知,,所以,,,,因此,而,所以,解得,故直线的方程为,即.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.19、(1)(2)【解析】

(1)由根据绝对值不等式的解法列不等式组,结合不等式的解集,求得的值.(2)利用绝对值不等式,证得的最小值为4,由此求得的取值范围.【详解】(1)∵函数,故不等式,即,即,求得.再根据不等式的解集为.可得,∴实数.(2)在(1)的条件下,,∴存在实数使成立,即,由于,∴的最小值为2,∴,故实数的取值范围是.【点睛】本小题主要考查根据绝对值不等式的解集求参数,考查利用绝对值不等式求解存在性问题,考查化归与转化的数学思想方法,属于中档题.20、(1);(2).【解析】【试题分析】(1)利用绝对值不等式,消去,可求得实数的值.(2)由(1)得.利用配凑法,结合基本不等式可求得最小值.【试题解析】(1)由,当且仅当且当时取等号,此时取最大值,即;(2)由(1)及可知,∴,则,(当且仅当,即时,取“=”)∴的最小值为4.21、【解析】试题分析:(1)对函数求导,,时,,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得极大值,也是最大值,所以的最大值为;(2)若对,总存在使得成立,则转化为,由(1)知,问题转化为求函数在区间上的最大值,对求导,,分类讨论,当时,函数在上恒成立,在上单调递增,只需满足,,解得,所以;当时,时,(舍),当时,在上恒成立,只需满足,,解得,当,即时,在递减,递增,而,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论