版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年河南省驻马店市遂平县第一中学高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在等腰三角形ABC中,∠A=150°,AB=AC=1,则=()A. B. C. D.参考答案:A【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】方法一:利用向量的射影即可求出,方法二:根据向量数量积的公式,余弦定理,两角差的余弦公式即可求出.【解答】解:方法一:如图所示,过点C作CD⊥BA,交于点D,∴=﹣?=﹣||?||cosB=﹣=﹣(1+)=﹣1﹣方法二,等腰三角形ABC中,∠A=150°,AB=AC=1,∴B=15°,∴cos15°=cos(45°﹣30°)=×+×=由余弦定理可得BC2=AB2+AC2﹣2AB?AC?cosA=1+1﹣2×(﹣)=2+,∴BC=∴=||||cos(180°﹣15°)=1××(﹣)=﹣1﹣故选:A.【点评】本题主要考查平面向量的基本运算,利用向量的射影和向量数量积,以及余弦定理解决本题的关键.2.若复数是纯虚数(i是虚数单位),则a的值为
A.-2
B.2
C.1
D.-1参考答案:D略3.复数(为虚数单位)在复平面上对应的点位于()A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:B略4.若集合=
(
)
A.
B.
C.
D.参考答案:答案:A5.已知三棱锥的三视图如图所示,则它的外接球表面积为(
)A.16π B.π C.4π D.2π参考答案:C【考点】由三视图求面积、体积.【专题】计算题.【分析】由三棱锥的三视图我们可以得三棱锥的外接球半径为1,球心为俯视图斜边上的中点,则易求它的外接球表面积.【解答】解:由三棱锥的三视图我们易得俯视图斜边上的中点到三棱锥各顶点的距离均为1所以三棱锥的外接球球心为俯视图斜边上的中点,半径为1故它的外接球表面积为4π故选C【点评】根据三视图判断空间几何体的形状,进而求几何的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N棱锥(N值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.6.△ABC中,则△ABC的周长为(A)
(B)(C)
(D)参考答案:答案:D7.已知函数的最小正周期为,则该函数的图象是A.关于直线对称
B.关于点对称C.关于直线对称
D.关于点对称参考答案:
依题意得,故,所以,,因此该函数的图象关于直线对称,不关于点和点对称,也不关于直线对称.故选8.已知函数f(x)=,函数g(x)=ax2﹣x+1,若函数y=f(x)﹣g(x)恰好有2个不同零点,则实数a的取值范围是(
)A.(0,+∞) B.(﹣∞,0)∪(2,+∞) C.(﹣∞,﹣)∪(1,+∞) D.(﹣∞,0)∪(0,1)参考答案:D【考点】根的存在性及根的个数判断.【专题】计算题;作图题;函数的性质及应用.【分析】化函数y=f(x)﹣g(x)恰好有2个不同零点为函数f(x)+x﹣1与函数y=ax2的图象有两个不同的交点,从而解得.【解答】解:∵f(x)﹣(ax2﹣x+1)=0,∴f(x)+x﹣1=ax2,而f(x)+x﹣1=,作函数y=f(x)+x﹣1与函数y=ax2的图象如下,,结合选项可知,实数a的取值范围是(﹣∞,0)∪(0,1),故选:D.【点评】本题考查了数形结合的思想应用及函数的零点与函数的图象的关系应用.9.对于函数,下列结论正确的一个是A.有极小值,且极小值点
B.有极大值,且极大值点
C.有极小值,且极小值点
D.有极大值,且极大值点
参考答案:C略10.已知,且,则等于 A.
B.
C.
D.参考答案:A因为,所以,解得,因为,所以;本题选择A选项.
二、填空题:本大题共7小题,每小题4分,共28分11.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是___________.参考答案:略12.已知cosα=﹣,且α∈(﹣π,0),则α=
(用反三角函数表示).参考答案:arccos﹣π【考点】反三角函数的运用.【专题】函数思想;定义法;三角函数的求值.【分析】根据反余弦函数的定义与性质,即可得出结果.【解答】解:∵arccos(﹣)=π﹣arccos,又cosα=﹣,且α∈(﹣π,0),∴﹣α∈(0,π),∴﹣α=π﹣arccos;即α=﹣π+arccos.故答案为:﹣π+arccos.【点评】本题考查了反余弦函数的应用问题,是基础题目.13.过双曲线=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若,则双曲线的离心率为
.参考答案:【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题设知|EF|=b,|PF|=2b,|PF′|=2a,过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,据此可求出P点的横坐标,后在Rt△PDF中根据勾股定理建立等式,由此能求出双曲线的离心率.【解答】解:∵|OF|=c,|OE|=a,OE⊥EF,∴|EF|=b,∵,∴E为PF的中点,|PF|=2b,又∵O为FF′的中点,∴PF′∥EO,∴|PF′|=2a,∵抛物线方程为y2=4cx,∴抛物线的焦点坐标为(c,0),即抛物线和双曲线右支焦点相同,过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,∴PD=PF′=2a,∴P点横坐标为2a﹣c,设P(x,y),在Rt△PDF中,PD2+DF2=PF2,即4a2+y2=4b2,4a2+4c(2a﹣c)=4(c2﹣b2),解得e=故答案为:.【点评】本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,同时考查抛物线的定义及性质,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.14.一个几何体的三视图如右图所示,则它的体积为
.参考答案:15.下列命题:①函数y=sin(2x+)的单调减区间为,k∈Z;②函数y=cos2x﹣sin2x图象的一个对称中心为(,0);③函数y=sin(x﹣)在区间上的值域为;④函数y=cosx的图象可由函数y=sin(x+)的图象向右平移个单位得到;⑤若方程sin(2x+)﹣a=0在区间上有两个不同的实数解x1,x2,则x1+x2=.其中正确命题的序号为
.参考答案:①②⑤考点:正弦函数的单调性;正弦函数的对称性;函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:①令+2kπ可求②利用两角和的余弦公式化简可得y=,令2x+,求出函数的对称中心③由可得,结合正弦函数的图象可求函数的值域④根据函数的图象平移法则:左加右减的平移法则可得⑤根据正弦函数的图象结合函数的对称性可得.解答: 解:①令+2kπ,解得+kπ,k∈Z,,故①正确②y=,令2x+,解得x=+kπ,k=0时函数的一个对称中心(,0)②正确③y=,当﹣,结合正弦函数的图象可得﹣≤y≤1,③错误④由函数y=sin(x+)的图象向右平移个单位得到y=sinx的图象,故④错误⑤令y=sin(2x+),当x时,2x+,若使方程有两解,则两解关于x=对称,则x1+x2=,故⑤正确故答案为:①②⑤点评:本题综合考查了三角函数y=Asin(ωx+?)(A>0,ω>0)的性质:函数的单调区间的求解,函数的对称中心的求解,函数在闭区间上的最值的求解及函数图象的平移,还用到了两角和的余弦公式,而解决本题的关键是要熟练掌握并能灵活运用三角函数的图象.16.设,,计算可知,,并由此概括出关于函数和的一个等式,使上面的两个等式是你写出的等式的特例,这个等式是_________________________参考答案:17.在边长为的等边中,为边上一动点,则的取值范围是.参考答案:因为D在BC上,所以设,则。所以,因为,所以,即的取值范围数。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)某站针对2014年中国好声音歌手三人进行上投票,结果如下
观众年龄支持支持支持20岁以下20040080020岁以上(含20岁)100100400
(1)在所有参与该活动的人中,用分层抽样的方法抽取人,其中有6人支持,求的值.(2)若在参加活动的20岁以下的人中,用分层抽样的方法抽取7人作为一个总体,从7人中任意抽取3人,用随机变量表示抽取出3人中支持的人数,写出的分布列并计算.参考答案:【知识点】离散型随机变量及其分布列K6【答案解析】(1)40(2)(1)∵利用层抽样的方法抽取n个人时,从“支持A方案”的人中抽取了6人,
∴=,解得n=40,
(2)X=0,1,2X012P274717∴E(X)=1×+2×=,D(X)=×(0-)2+×(1-)2+×(2-)2=.【思路点拨】(1)根据分层抽样时,各层的抽样比相等,结合已知构造关于n的方程,解方程可得n值.
(2)X=0,1,2,求出相应的概率,可得X的分布列并计算E(X),D(X).19.在用“五点法”画函数f(x)=Asinx(ωx+φ)(ω>0,|φ|<)在某一周期内的图象时,列表并填人了部分数据,如表:ωx+φ0π2πx①2π②5π③Asin(ωx+φ)02④﹣20(1)请将上表中①②③④处数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点的横坐标缩短为原来的,再将所得图象向左平移π个单位,得到y=g(x)的图象,求g(x)在z∈[﹣2π,2π]时的单调递增区间.参考答案:【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.【分析】(1)根据用五点法作函数f(x)=Asinx(ωx+φ)的图象,求得表中①②③④处数据,并直接写出函数f(x)的解析式.(2)由条件利用y=Asin(ωx+φ)的图象变换规律,求得g(x)=2sin(x+),再根据整弦函数的单调性求得g(x)在z∈[﹣2π,2π]时的单调递增区间.【解答】解:(1)由表格可得A=2,再根据ω?2π+φ=,ω?5π+φ=,求得ω=,φ=﹣,令x﹣=0,求得x=故①为.令x﹣=π,求得x=,Asin0=0,故②为,④为0.令x﹣=2π,求得x=,故③为.函数f(x)的解析式为f(x)=2sin(x﹣),(2)将y=f(x)图象上所有点的横坐标缩短为原来的,得到y=2sin(x﹣),再将所得图象向左平移π个单位,得到y=g(x)=2sin[(x+π)﹣]=2sin(x+)的图象.由2kπ﹣≤x+≤2kπ+,求得4kπ﹣≤x≤4kπ+,k∈Z,故g(x)在z∈[﹣2π,2π]时的单调递增区间为[﹣,].20.(本小题满分10分)已知等差数列的前n项和为,且.数列的前n项和为,且,.(Ⅰ)求数列,的通项公式;(Ⅱ)设,求数列的前项和.参考答案:【答案解析】(I),(II)解析:解:(Ⅰ)由题意,,得.
,,,两式相减,得数列为等比数列,.
(Ⅱ).
【思路点拨】根据已知条件求出数列的通项公式,利用分组求和法求数列的和.21.一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.(1)求甲三次都取得白球的概率;(2)求甲总得分ξ的分布列和数学期望.参考答案:(1);(2)【分析】(1)本题为有放回的取球问题,可看作独立重复试验,求出概率即可;(2)ξ的所有可能取值为6,7,8,分别求其概率即可,利用期望公式求解即可.【详解】(1)由题意得,甲每次都取得白球的概率为,所以甲三次都取得白球的概率为;(2)甲总得分情况有6,7,8,9四种可能,记ξ为甲总得分.,,,ξ6789
P(x=ξ)27/12554/12536/1258/125
甲总得分ξ的期望【点睛】本题考查独立重复事件的概率、离散型随机变量的分布列和期望等知识,属于基础题.22.如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1—13分别对应2017年1月—2018年1月)根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程分别为和,并得到以下一些统计量的值:
残差平方和0.0005910.000164总偏差平方和0.006050(1)请利用相关指数判断哪个模型的拟合效果更好;(2)某位购房者拟于2018年6月份购买这个小区平方米的二手房(欲购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效果更好的模型解决以下问题:(i)估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米)(ii)若该购房者拟用不超过100万元的资金购买该小区一套二手房,试估算其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款)征收方式见下表:契税(买方缴纳)首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且144平方米以内(含144平方米)为1.5%;面积144平方米以上或非首套为3%增值税(卖方缴纳)房产证未满2年或满2年且面积在144平方米以上(不含144平方米)为5.6%;其他情况免征个人所得税(卖方缴纳)首套面积144平方米以内(含144平方米)为1%;面积144平方米以上或非首套均为1.5%;房产证满5年且是家庭唯一住房的免征参考数据:,,,,,,,.参考公式:相关指数.参考答案:(1)【考查意图】本小题以购房问题为背景,以散点图、相关指数为载体,考查回归分析等基础知识,考查数据处理能力、推理论证能力、运算求解能力和应用意识,考查统计与概率思想等.【解法综述】只要理解相关指数的意义便可通过简单估算解决问题.【错因分析】考生可能存在的错误有:不懂相关指数的意义导致判断错误.【难度属性】易.(2)(i)【考查意图】本小题以估算购房金额为载体,考查回归分析、函数等基础知识,考查抽象概括能力、运算求解能力、应用意识,考查统计与概率思想、分类与整合思想、函数与方程思想等.考查学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度仓库租赁协议
- 2024年度虚拟现实设备租赁合同
- 暂借合同范本
- 2024年度内蒙古自治区矿产开发合同
- 医疗美容服务委托合同三篇
- 2024年度建筑项目验收评估合同2篇
- 车辆收购合同范本
- 双方劳动关系合同三篇
- 2024年度保险合同理赔服务流程与合同标的明细
- 请问建房合同范本
- 山东省烟台市2024年中考英语真题【附真题答案】
- GB/T 44186-2024固定式压缩空气泡沫灭火系统
- 2布达拉宫解析
- 二年级下册科学教案-5《磁极的秘密》 青岛版
- JGJ104-2011建筑工程冬期施工规程
- 船体结构智慧树知到期末考试答案章节答案2024年山东交通学院
- 大数据与人工智能营销智慧树知到期末考试答案章节答案2024年南昌大学
- 大学美育智慧树知到期末考试答案章节答案2024年安徽师范大学
- 大学生心理健康教育(江汉大学)智慧树知到期末考试答案章节答案2024年江汉大学
- AQ 1117-2020 煤矿井下注浆用高分子材料安全使用管理规范(正式版)
- 2024中考英语专项练习-语法填空20篇含解析
评论
0/150
提交评论