齐鲁名校教科研协作体 山东、湖北部分重点中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第1页
齐鲁名校教科研协作体 山东、湖北部分重点中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第2页
齐鲁名校教科研协作体 山东、湖北部分重点中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第3页
齐鲁名校教科研协作体 山东、湖北部分重点中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第4页
齐鲁名校教科研协作体 山东、湖北部分重点中学2022-2023学年高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个三角形的三边长成等比数列,公比为,则函数的值域为()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)2.执行如图所示的程序框图,则输出的()A.3 B.4 C.5 D.63.点(4,0)关于直线5x+4y+21=0的对称点是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)4.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角5.设集合,则()A. B. C. D.6.已知三棱锥的所有顶点都在球的球面上,,则球的表面积为()A. B. C. D.7.设是数列的前项和,时点在抛物线上,且的首项是二次函数的最小值,则的值为()A.45 B.54 C.36 D.-188.直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则n的值为()A.-12 B.-14 C.10 D.89.执行如图所示的程序框图,则输出的s的值为()A. B. C. D.10.甲、乙、丙、丁四名运动员参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示,从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是()人数据甲乙丙丁平均数8.68.98.98.2方差3.53.52.15.6A.甲 B.乙 C.丙 D.丁二、填空题:本大题共6小题,每小题5分,共30分。11.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是.12.已知,若方程的解集为,则__________.13.在平面直角坐标系中,点,,若直线上存在点使得,则实数的取值范围是_____.14.已知数列是首项为,公差为的等差数列,若数列是等比数列,则___________.15.已知斜率为的直线的倾斜角为,则________.16.若是等差数列,首项,,,则使前项和最大的自然数是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,为坐标原点,,,三点满足.(1)求值;(2)已知若的最小值为,求的最大值.18.已知数列的首项.(1)证明:数列是等比数列;(2)数列的前项和.19.已知的三个内角、、的对边分别是、、,的面积,(Ⅰ)求角;(Ⅱ)若中,边上的高,求的值.20.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.21.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由题意先设出三边为则由三边关系:两短边和大于第三边,分公比大于与公式在小于两类解出公比的取值范围,此两者的并集是函数的定义域,再由二次函数的性质求出它的值域,选出正确选项.【详解】解:设三边:则由三边关系:两短边和大于第三边,即

(1)当时,,即,解得;

(2)当时,为最大边,,即,解得,

综合(1)(2)得:,

又的对称轴是,故函数在上是减函数,在上是增函数,

由于时,与时,,

所以函数的值域为,故选:D.【点睛】本题考查等比数列的性质及二次函数的值域的求法,解答本题关键是熟练掌握等比数列的性质,能利用它建立不等式解出公比的取值范围得出函数的定义域,熟练掌握二次函数的性质也很重要,由此类题可以看出,扎实的双基,娴熟的基础知识与公式的记忆是解题的知识保障.2、C【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得

S=0,n=1

S=2,n=2

满足条件S<30,执行循环体,S=2+4=6,n=3

满足条件S<30,执行循环体,S=6+8=14,n=4

满足条件S<30,执行循环体,S=14+16=30,n=1

此时,不满足条件S<30,退出循环,输出n的值为1.

故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.3、D【解析】试题分析:设点(4,0)关于直线5x+4y+21=0的对称点是,则点在直线5x+4y+21=0上,将选项代入就可排除A,B,C,答案为D考点:点关于直线对称,排除法的应用4、C【解析】

由题意,可知,所以角和角表示终边相同的角,即可得到答案.【详解】由题意,可知,所以角和角表示终边相同的角,又由表示第三象限角,所以是第三象限角,故选C.【点睛】本题主要考查了象限角的表示和终边相同角的表示,其中解答中熟记终边相同角的表示是解答本题的关键,着重考查了推理与计算能力,属于基础题.5、B【解析】

补集:【详解】因为,所以,选B.【点睛】本题主要考查了集合的运算,需要掌握交集、并集、补集的运算。属于基础题。6、A【解析】设外接圆半径为,三棱锥外接球半径为,∵,∴,∴,∴,∴,由题意知,平面,则将三棱锥补成三棱柱可得,,∴,故选A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.7、B【解析】

根据点在抛物线上证得数列是等差数列,由二次函数的最小值求得首项,进而求得的值.【详解】由于时点在抛物线上,所以,所以数列是公差为的等差数列.二次函数,所以.所以.故选:B【点睛】本小题主要考查等差数列的证明,考查二次函数的最值的求法,考查等差数列前项和公式,属于基础题.8、A【解析】

由直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【详解】∵直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案为:A【点睛】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9、A【解析】

模拟程序运行,观察变量值,判断循环条件可得结论.【详解】运行程序框图,,;,;,,此时满足条件,跳出循环,输出的.故选:A.【点睛】本题考查程序框图,考查循环结构,解题时只要模拟程序运行即可得结论.10、C【解析】

甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙是最佳人选.【详解】甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,综合平均数和方差两个方面说明丙成绩即高又稳定,丙是最佳人选,故选:C.【点睛】本题考查平均数和方差的实际应用,考查数据处理能力,求解时注意方差越小数据越稳定.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

,,是平面内两个相互垂直的单位向量,∴,∴,,,为与的夹角,∵是平面内两个相互垂直的单位向量∴,即,所以当时,即与共线时,取得最大值为,故答案为.12、【解析】

将利用辅助角公式化简,可得出的值.【详解】,其中,,因此,,故答案为.【点睛】本题考查利用辅助角公式化简计算,化简时要熟悉辅助角变形的基本步骤,考查运算求解能力,属于中等题.13、.【解析】

设由,求出点轨迹方程,可判断其轨迹为圆,点又在直线,转化为直线与圆有公共点,只需圆心到直线的距离小于半径,得到关于的不等式,求解,即可得出结论.【详解】设,,,,整理得,又点在直线,直线与圆共公共点,圆心到直线的距离,即.故答案为:.【点睛】本题考查求曲线的轨迹方程,考查直线与圆的位置关系,属于中档题.14、或【解析】

由等比数列的定义得出,可得出,利用两角和与差的余弦公式化简可求得的值.【详解】由于数列是首项为,公差为的等差数列,则,,又数列是等比数列,则,即,即,即,整理得,即,可得,,因此,或.故答案为:或.【点睛】本题考查利用等差数列和等比数列的定义求参数,同时也涉及了两角和与差的余弦公式的化简计算,考查计算能力,属于中等题.15、【解析】

由直线的斜率公式可得=,分析可得,由同角三角函数的基本关系式计算可得答案.【详解】根据题意,直线的倾斜角为,其斜率为,则有=,则,必有,即,平方有:,得,故,解得或(舍).故答案为﹣【点睛】本题考查直线的倾斜角,涉及同角三角函数的基本关系式,属于基础题.16、【解析】

由已知条件推导出,,由此能求出使前项和成立的最大自然数的值.【详解】解:等差数列,首项,,,,.如若不然,,则,而,得,矛盾,故不可能.使前项和成立的最大自然数为.故答案为:.【点睛】本题考查等差数列的前项和取最大值时的值的求法,是中档题,解题时要认真审题,注意等差数列的通项公式的合理运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】

(1)由,得,化简得,即可得到答案;(2)化简函数,对实数分类讨论求得函数的最小值,得到关于的分段函数,进而求得函数的最大值.【详解】(1)由题意知三点满足,可得,所以,即即,则,所以.(2)由题意,函数因为,所以,当时,取得最小值,当时,当时,取得最小值,当时,当时,取得最小值,综上所述,,可得函数的最大值为1,即的最大值为1.【点睛】本题主要考查了向量的线性运算,向量的数量积的坐标性质,以及三角函数和二次函数的性质的综合应用,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.18、(1)证明见解析;(2).【解析】试题分析:(1)对两边取倒数得,化简得,所以数列是等比数列;(2)由(1)是等比数列.,求得,利用错位相减法和分组求和法求得前项和.试题解析:(1),又,数列是以为首项,为公比的等比数列.(2)由(1)知,,即,设,①则,②由①-②得,.又.数列的前项和.考点:配凑法求通项,错位相减法.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由面积公式推出,代入所给等式可得,求出角C的余弦值从而求得角C;(Ⅱ)首先由求出边c,再由面积公式代入相应值求出边b,利用余弦定理即可求出边a.【详解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,将代入中得,解得.【点睛】本题考查余弦定理解三角形,三角形面积公式,属于基础题.20、(1)证明见解析(2)证明见解析【解析】

(1)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(2)通过证明,证得平面,由此证得平面,从而证得平面平面.【详解】(1)证明:取PC的中点H,连接FH则FH∥BC,FH,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四边形EFHD为平行四边形,∴EF∥DH,又DH⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD;(2)证明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂线定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.21、(Ⅰ)证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ)根据,知与确定一个平面,连接,得到,,从而平面,证得.(Ⅱ)设的中点为,连,在,中,由三角形中位线定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论