2023届云南省玉溪市元江县第一中学高一数学第二学期期末检测试题含解析_第1页
2023届云南省玉溪市元江县第一中学高一数学第二学期期末检测试题含解析_第2页
2023届云南省玉溪市元江县第一中学高一数学第二学期期末检测试题含解析_第3页
2023届云南省玉溪市元江县第一中学高一数学第二学期期末检测试题含解析_第4页
2023届云南省玉溪市元江县第一中学高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α的终边上有一点P(sin,cos),则tanα=()A. B. C. D.2.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A.,则B.,则C.,则D.,则3.在中,角A,B,C所对的边分别为a,b,c,若,,,则满足条件的的个数为()A.0 B.1 C.2 D.无数多个4.若满足条件的三角形ABC有两个,那么a的取值范围是()A. B. C. D.5.命题“”的否定是()A., B.,C., D.,6.数列的首项为,为等差数列,且(),若,,则()A. B. C. D.7.给定函数:①;②;③;④,其中奇函数是()A.① B.② C.③ D.④8.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的是()A.29 B.17 C.12 D.59.函数的图象与函数的图象交点的个数为()A. B. C. D.10.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为A.16 B.24 C.32 D.48二、填空题:本大题共6小题,每小题5分,共30分。11.若正实数,满足,则的最小值是________.12.在中,已知,,,则角__________.13.在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为________14.执行如图所示的程序框图,则输出结果_____.15.如图是一个三角形数表,记,,…,分别表示第行从左向右数的第1个数,第2个数,…,第个数,则当,时,______.16.函数()的值域是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(Ⅰ)求,的值;(Ⅱ)求的值.18.已知函数,其图象与轴相邻的两个交点的距离为.(1)求函数的解析式;(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.19.如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.20.如图,已知等腰梯形中,是的中点,,将沿着翻折成,使平面平面.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点P,使得平面,若存在,求出的值;若不存在,说明理由.21.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为3元,根据以往的经验售价为4元时,可卖出280桶;若销售单价每增加1元,日均销售量就减少40桶,则这个经营部怎样定价才能获得最大利润?最大利润是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由题意利用任意角的三角函数的定义,求得tanα的值.【详解】解:∵角α的终边上有一点P(sin,cos),∴x=sin,y=cos,∴则tanα,故选A.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.2、D【解析】

根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.3、B【解析】

直接由正弦定理分析判断得解.【详解】由正弦定理得,所以C只有一解,所以三角形只有一解.故选:B【点睛】本题主要考查正弦定理的应用,意在考查学生对这些知识的理解掌握水平.4、C【解析】

利用正弦定理,用a表示出sinA,结合C的取值范围,可知;根据存在两个三角形的条件,即可求得a的取值范围。【详解】根据正弦定理可知,代入可求得因为,所以若满足有两个三角形ABC则所以所以选C【点睛】本题考查了正弦定理在解三角形中的简单应用,判断三角形的个数情况,属于基础题。5、B【解析】

含有一个量词的命题的否定,注意“改量词,否结论”.【详解】改为,改成,则有:.故选:B.【点睛】本题考查含一个量词的命题的否定,难度较易.6、B【解析】由题意可设等差数列的首项为,公差为,所以所以,所以,即=2n-8,=,所以,选B.7、D【解析】试题分析:,知偶函数,,知非奇非偶,知偶函数,,知奇函数.考点:函数奇偶性定义.8、B【解析】

根据程序框图依次计算得到答案.【详解】结束,输出故答案选B【点睛】本题考查了程序框图的计算,属于常考题型.9、D【解析】

通过对两函数的表达式进行化简,变成我们熟悉的函数模型,比如反比例、一次函数、指数、对数及三角函数,看图直接判断【详解】由,作图如下:共6个交点,所以答案选择D【点睛】函数图象交点个数问题与函数零点、方程根可以作相应等价,用函数零点及方程根本题不现实,所以我们更多去考虑分别作图象,直接看交点个数.10、B【解析】

根据分层抽样各层在总体的比例与在样本的比例相同求解.【详解】因为分层抽样总体和各层的抽样比例相同,所以各层在总体的比例与在样本的比例相同,所以样本中乙类型饮品的数量为.故选B.【点睛】本题考查分层抽样,依据分层抽样总体和各层的抽样比例相同.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将配凑成,由此化简的表达式,并利用基本不等式求得最小值.【详解】由得,所以.当且仅当,即时等号成立.故填:.【点睛】本小题主要考查利用基本不等式求和式的最小值,考查化归与转化的数学思想方法,属于中档题.12、【解析】

先由正弦定理得到角A的大小,再由三角形内角和为得到结果.【详解】根据三角形正弦定理得到:,故得到或,因为故得到故答案为.【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.13、【解析】

根据题意结合整除中的余数问题、最小公倍数问题,进行分析求解即可.【详解】由题意得:一个数用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,即最小的一个数为23,同时这个数相差又是3,5,7的最小公倍数,即,即数列的通项公式可以表示为,故答案为:.【点睛】本题以数学文化为背景,利用数列中的整除、最小公倍数进行求解,考查逻辑推理能力和运算求解能力.14、1【解析】

弄清程序框图的算法功能是解题关键.由模拟执行程序,可知,本程序的算法功能是计算的值,依据数列求和方法——并项求和,即可求出.【详解】根据程序框图,可得程序框图的功能是计算并输出,输出的为1.【点睛】本题主要考查了含有循环结构的程序框图的算法功能的理解以及数列求和的基本方法——并项求和法的应用.正确得到程序框图的算法功能,选择合适的求和方法是解题的关键.15、【解析】

由图表,利用归纳法,得出,再利用叠加法,即可求解数列的通项公式.【详解】由图表,可得,,,,,可归纳为,利用叠加法可得:,故答案为.【点睛】本题主要考查了归纳推理的应用,以及数列的叠加法的应用,其中解答中根据图表,利用归纳法,求得数列的递推关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16、【解析】

由,根据基本不等式即可得出,然后根据对数函数的单调性即可得出,即求出原函数的值域.【详解】解:,当且仅当,时取等号,;原函数的值域是.故答案为:.【点睛】考查函数的值域的定义及求法,基本不等式的应用,以及对数函数的单调性,增函数的定义.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),.(Ⅱ).【解析】试题分析:(Ⅰ)结合角的范围和同角三角函数基本关系可得,.(Ⅱ)将原式整理变形,结合(Ⅰ)的结论可得其值为.试题解析:(Ⅰ)因为,所以,由于,所以,所以.(Ⅱ)原式..18、(1)(2)单调增区间为,;单调减区间为.【解析】

(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与轴相邻的两个交点的距离为,得出周期,利用周期公式得出,即可得出该函数的解析式;(2)根据平移变换得出,再由函数的图象经过点,结合正弦函数的性质得出的最小值,进而得出,利用整体法结合正弦函数的单调性得出该函数在上的单调区间.【详解】解:(1)由已知函数的周期,,∴.(2)将的图象向左平移个长度单位得到的图象∴,∵函数的图象经过点∴,即∴,∴,∵,∴当,取最小值,此时最小值为此时,.令,则当或,即当或时,函数单调递增当,即时,函数单调递减.∴在上的单调增区间为,;单调减区间为.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.19、(1)见证明;(2)见证明【解析】

(1)由,,得,进而得即可证明平面.(2)平面得,由,,得,进而证明平面,则平面平面【详解】证明:(1)因为,,所以,所以,因为平面,平面,所以平面.(2)因为平面,平面,所以.因为,,所以,又,所以平面.又平面,所以平面平面.【点睛】本题考查线面平行的判定,面面垂直的判定,考查空间想象及推理能力,熟记判定定理是关键,是基础题20、(Ⅰ)详见解析;(Ⅱ)二面角的余弦值为;(Ⅲ)存在点P,使得平面,且.【解析】

试题分析:(I)根据直线与平面垂直的判定定理,需证明垂直平面内的两条相交直线.由题意易得四边形是菱形,所以,从而,即,进而证得平面.(Ⅱ)由(I)可知,、、两两互相垂直,故可以为轴,为轴,为轴建立空间直角坐标系,利用空间向量即可求得二面角的余弦值.(Ⅲ)根据直线与平面平行的判定定理,只要能找到一点P使得PM平行平面内的一条直线即可.由于,故可取线段中点P,中点Q,连结.则,且.由此即可得四边形是平行四边形,从而问题得证.试题解析:(I)由题意可知四边形是平行四边形,所以,故.又因为,M为AE的中点所以,即又因为,所以四边形是平行四边形.所以故.因为平面平面,平面平面,平面所以平面.因为平面,所以.因为,、平面,所以平面.(Ⅱ)以为轴,为轴,为轴建立空间直角坐标系,则,,,.平面的法向量为.设平面的法向量为,因为,,,令得,.所以,因为二面角为锐角,所以二面角的余弦值为.(Ⅲ)存在点P,使得平面.法一:取线段中点P,中点Q,连结.则,且.又因为四边形是平行四边形,所以.因为为的中点,则.所以四边形是平行四边形,则.又因为平面,所以平面.所以在线段上存在点,使得平面,.法二:设在线段上存在点,使得平面,设,(),,因为.所以.因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论