下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学等差数列知识点总结高中数学等差数列知识点总结全文共4页,当前为第1页。高中数学等差数列知识点总结全文共4页,当前为第1页。高中数学数列知识点总结可以帮助大家更清楚地认识高中数列,数列的知识点也是很重要而且有些难学的知识点下面是小编为大家整理的关于高中数学等差数列知识点,希望对您有所帮助!高中等差数列知识点1.定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。同样为数列的等比数列的性质与等差数列也有相通之处。2.数列为等差数列的充要条件是:数列的前n项和S可以写成S=an^2+bn的形式(其中a、b为常数).等差数列练习题3.性质1:公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.4.性质2:公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.5.性质3:当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.高考数学等差数列知识点等差数列公式an=a1+(n-1)da1为首项,an为第n项的通项公式,d为公差前n项和公式为:Sn=na1+n(n-1)d/2Sn=(a1+an)n/2若m+n=p+q则:存在am+an=ap+aq若m+n=2p则:am+an=2ap以上n.m.p.q均为正整数解析:第n项的值an=首项+(项数-1)×公差前n项的和Sn=首项×n+项数(项数-1)公差/2公差d=(an-a1)÷(n-1)高中数学等差数列知识点总结全文共4页,当前为第2页。高中数学等差数列知识点总结全文共4页,当前为第2页。数列为奇数项时,前n项的和=中间项×项数数列为偶数项,求首尾项相加,用它的和除以2等差中项公式2an+1=an+an+2其中{an}是等差数列通项公式:公差×项数+首项-公差等差数列求和公式若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:S=(a1+an)n÷2即(首项+末项)×项数÷2前n项和公式注意:n是正整数(相当于n个等差中项之和)等差数列前N项求和,实际就是梯形公式的妙用:上底为:a1首项,下底为a1+(n-1)d,高为n。即[a1+a1+(n-1)d]_n/2={a1n+n(n-1)d}/2。推理过程设首项为,末项为,项数为,公差为,前项和为,则有:当d≠0时,Sn是n的二次函数,(n,Sn)是二次函数的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。求和推导证明:由题意得:Sn=a1+a2+a3+。。。+an①Sn=an+a(n-1)+a(n-2)+。。。+a1②①+②得:2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2Sn=n(A1+An)/2(a1,an,可以用a1+(n-1)d这种形式表示可以高中数学等差数列知识点总结全文共4页,当前为第3页。高中数学等差数列知识点总结全文共4页,当前为第3页。基本公式公式Sn=(a1+an)n/2等差数列知识点1.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1高中数学等差数列知识点总结全文共4页,当前为第4页。高中数学等差数列知识点总结全文共4页,当前为第4页。一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。二、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭养花技巧与心理健康的关联
- 全新磷矿石销售合同范本下载
- 出国劳务经济简单合同范本
- 反担保最高额抵押合同
- 室内装修合同
- 小学教育中如何融入心理素质培养的课程设计
- 小学教育中的家庭教育核心指导策略
- 香菇购销合同范本
- 家庭医生制度下的医疗科技应用与传播
- 学生综合素质拓展活动的评估与反馈
- 高中数学笔记总结高一至高三很全
- 《物理因子治疗技术》期末考试复习题库(含答案)
- 011(1)-《社会保险人员减员申报表》
- 电厂C级检修工艺流程
- 函授本科《小学教育》毕业论文范文
- 高考高中英语单词词根词缀大全
- 江苏省泰州市姜堰区2023年七年级下学期数学期末复习试卷【含答案】
- 药用辅料聚乙二醇400特性、用法用量
- 《中小学机器人教育研究(论文)11000字》
- GB/T 22085.1-2008电子束及激光焊接接头缺欠质量分级指南第1部分:钢
- 全过程人民民主学习心得体会
评论
0/150
提交评论