版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年南阳市重点中学高二数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线的方向向量为,则直线l的倾斜角为()A.30° B.60°C.120° D.150°2.如图是一水平放置的青花瓷.它的外形为单叶双曲面,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面,且其外形上下对称.花瓶的最小直径为,瓶口直径为,瓶高为,则该双曲线的虚轴长为()A. B.C. D.453.已知点在平面α上,其法向量,则下列点不在平面α上的是()A. B.C. D.4.已知,,若不等式恒成立,则正数的最小值是()A.2 B.4C.6 D.85.已知递增等比数列的前n项和为,,且,则与的关系是()A. B.C. D.6.已知F为椭圆的右焦点,A为C的右顶点,B为C上的点,且垂直于x轴.若直线AB的斜率为,则椭圆C的离心率为()A. B.C. D.7.与的等差中项是()A. B.C. D.8.已知抛物线的焦点为F,点A在抛物线上,直线FA与抛物线的准线交于点M,O为坐标原点.若,且,则()A.1 B.2C.3 D.49.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.10.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形11.已知命题:若直线的方向向量与平面的法向量垂直,则;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.12.已知,,且,则向量与的夹角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点P(8,1)平分椭圆x2+4y2=4的一条弦,则这条弦所在直线的方程是_______.14.已知抛物线的焦点为,点在上,且,则______15.过抛物线:的焦点的直线交于,两点,若,则线段中点的横坐标为______16.已知直线与圆相切,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D(单位:)与声音能量I(单位:)之间的关系,将测量得到的声音强度D和声音能量I的数据作了初步处理,得到如图所示的散点图:参考数据:其中,,,,,,,,(1)根据散点图判断,与哪一个适宜作为声音强度D关于声音能量I的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D关于声音能量I回归方程(3)假定当声音强度D大于时,会产生噪声污染.城市中某点P处共受到两个声源的影响,这两个声通的声音能量分别是和,且.已知点P处的声音能量等于与之和.请根据(2)中的回归方程,判断点P处是否受到噪声污染,并说明理由参考公式:对于一组数据,其回归直线斜率和截距的最小二乘估计公式分别为:18.(12分)数列满足,,.(1)证明:数列是等差数列;(2)设,求数列的前项和.19.(12分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围20.(12分)如图在四棱锥中,底面是菱形,,平面平面,,,为的中点,是棱上的一点,且.(1)求证:平面;(2)求二面角的余弦值.21.(12分)已知数列是正项数列,,且.(1)求数列的通项公式;(2)设,数列的前项和为,若对恒成立,求实数的取值范围.22.(10分)【阅读材料1】我们在研究两个变量之间的相关关系时,往往先选取若干个样本点(),(),……,(),将样本点画在平面直角坐标系内,就得到样本的散点图.观察散点图,如果所有样本点都落在某一条直线附近,变量之间就具有线性相关关系,如果所有的样本点都落在某一非线性函数图象附近,变量之间就有非线性相关关系.在统计学中经常选择线性或非线性(函数)回归模型来刻画相关关系,并且可以用适当的方法求出回归模型的方程,还常用相关指数R2来刻画回归的效果,相关指数R2的计算公式为:当R2越大时,回归方程的拟合效果越好;当R2越小时,回归方程的拟合效果越差,R2是常用的选择模型的指标之一,在实际应用中应该尽量选择R2较大的回归模型.【阅读材料2】2021年6月17日9时22分,我国酒泉卫星发射中心用长征二号F遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪胺3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A型材料是神舟十二号的重要零件,该材料应用前景十分广泛,该公司为了将A型材料更好地投入商用,拟对A型材料进行应用改造,根据市场调研与模拟,得到应用改造投入x(亿元)与产品的直接收益y(亿元)的数据统计如下:序号123456789101112x2346810132122232425y1522274048546068.56867.56665当0<x≤13时,建立了与的两个回归模型:模型①:;模型②:;当x>13时,确定y与x满足的线性回归直线方程为.根据以上阅读材料,解答以下问题:(1)根据下列表格中的数据,比较当0<x≤13时模型①,②的相关指数R2的大小,并选择拟合效果更好的模型.回归模型模型①模型②回归方程79.1320.2(2)当应用改造的投入为20亿元时,以回归直线方程为预测依据,计算公司的收益约为多少.附:①若最小二乘法求得回归直线方程为,则;②③,当时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】利用直线的方向向量求出其斜率,进而求出倾斜角作答.【题目详解】因直线的方向向量为,则直线l的斜率,直线l的倾斜角,于是得,解得,所以直线l的倾斜角为.故选:B2、C【解题分析】设双曲线方程为,,由已知可得,并求得双曲线上一点的坐标,把点的坐标代入双曲线方程,求解,即可得到双曲线的虚轴长【题目详解】设点是双曲线与截面的一个交点,设双曲线的方程为:,花瓶的最小直径,则,由瓶口直径为,瓶高为,可得,故,解得,该双曲线的虚轴长为故选:3、D【解题分析】根据法向量的定义,利用向量垂直对四个选项一一验证即可.【题目详解】对于A:记,则.因为,所以点在平面α上对于B:记,则.因为,所以点在平面α上对于C:记,则.因为,所以点在平面α上对于D:记,则.因为,所以点不在平面α上.故选:D4、B【解题分析】由基本不等式求出的最小值,只需最小值大于等于18,得到关于的不等式,求解,即可得出结论.【题目详解】,因为不等式恒成立,所以,即,解得,所以.故选:B.【题目点拨】本题考查基本不等式的应用,考查一元二次不等式的解法,属于基础题.5、D【解题分析】设等比数列的公比为,由已知列式求得,再由等比数列的通项公式与前项和求解.【题目详解】设等比数列的公比为,由,得,所以,又,所以,所以,,所以即故选:D6、D【解题分析】根据题意表示出点的坐标,再由直线AB的斜率为,列方程可求出椭圆的离心率【题目详解】由题意得,,当时,,得,由题意可得点在第一象限,所以,因为直线AB的斜率为,所以,化简得,所以,,得(舍去),或,所以离心率,故选:D7、A【解题分析】代入等差中项公式即可解决.【题目详解】与的等差中项是故选:A8、D【解题分析】设,由和在抛物线上,求出和,利用求出p.【题目详解】过A作AP垂直x轴与P.抛物线的焦点为,准线方程为.设,因为,所以,解得:.因为在抛物线上,则.所以,即,解得:.故选:D9、D【解题分析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【题目详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D10、C【解题分析】根据立体几何相关知识对各选项进行判断即可.【题目详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C11、D【解题分析】先判断出p、q的真假,再分别判断四个选项的真假.【题目详解】因为“若直线的方向向量与平面的法向量垂直,则或”,所以p为假命题;对于等轴双曲线,,所以离心率为,所以q为真命题.所以假命题,故A错误;为假命题,故B错误;为假命题,故C错误;为真命题,故D正确.故选:D12、B【解题分析】先求出向量与的夹角的余弦值,即可求出与的夹角.【题目详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】结合点差法求得正确答案.【题目详解】椭圆方程可化为,设是椭圆上的点,是弦的中点,则,两式相减并化简得,即,所以弦所在直线方程为,即.故答案为:14、【解题分析】由抛物线的焦半径公式可求得的值.【题目详解】抛物线的准线方程为,由抛物线的焦半径公式可得,解得.故答案为:.15、【解题分析】根据题意,作出抛物线的简图,求出抛物线的焦点坐标以及准线方程,分析可得为直角梯形中位线,由抛物线的定义分析可得答案【题目详解】如图,抛物线的焦点为,准线为,分别过,作准线的垂线,垂足为,,则有过的中点作准线的垂线,垂足为,则为直角梯形中位线,则,即,解得.所以的横坐标为故答案为:16、【解题分析】由直线与圆相切,结合点到直线的距离公式求解即可.【题目详解】由直线与圆相切,所以圆心到直线l的距离等于半径r,即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)更适合(2)(3)点P处会受到噪声污染,理由见解析【解题分析】(1)直接判断即可;(2)令,先算线性回归方程再算非线性回归方程;(3)利用基本不等式计算出的最小值,再与60比较即可.【小问1详解】更适合【小问2详解】令,则,,D关于W的回归方程是,则D关于I的回归方程是【小问3详解】设点P处的声音能量为,则因为所以当且仅当,即时等号成立所以,所以点P处会受到噪声污染18、(1)证明见解析;(2)【解题分析】(1)将的两边同除以,得到,由等差数列的定义,即可作出证明;(2)有(1)求出,利用错位相减法即可求解数列的前项和.试题解析:(1)证明:由已知可得=+1,即-=1.所以是以=1为首项,1为公差的等差数列(2)由(1)得=1+(n-1)·1=n,所以an=n2.从而bn=n·3n.Sn=1·31+2·32+3·33+…+n·3n,①3Sn=1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2Sn=31+32+…+3n-n·3n+1=-n·3n+1=.所以Sn=.点睛:本题主要考查了等差数列的定义、等差数列的判定与证明和数列的求和,着重考查了学生分析问题和解答问题的能力,本的解答中利用等差数列的定义得到数列为等差数列,求解的表达式,从而化简得到,利用乘公比错位相减法求和中,准确计算是解答的一个难点.19、(1)(2)【解题分析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,得到,根据其最小值,求出,即可得出椭圆方程;(2)设,,,联立直线与椭圆方程,根据韦达定理,由弦长公式,以及点到直线距离公式,求出的面积的最值,得到;得出点的轨迹为椭圆,且点为椭圆的左、右焦点,记,则,得到,根据对勾函数求出最值.【小问1详解】设点,由题意知,所以:,则,当时,取得最大值,即,故椭圆C的标准方程是【小问2详解】设,,,则由得,,点O到直线l的距离,对用均值不等式,则:当且仅当即,①,S取得最大值.此时,,,即,代入①式整理得,即点M的轨迹为椭圆且点,为椭圆的左、右焦点,即记,则于是:,由对勾函数的性质:当时,,且,故的取值范围为20、(1)见解析;(2).【解题分析】(1)推导出PQ⊥AD,从而PQ⊥平面ABCD,连接AC,交BQ于N,连接MN,则AQ∥BC,推导出MN∥PA,由此能证明PA∥平面BMQ(2)连结BD,以Q为坐标原点,以QA、QB、QP分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角M﹣BQ﹣P的余弦值【题目详解】(1)由已知PA=PD,Q为AD的中点,∴PQ⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PQ⊂面PAD,∴PQ⊥平面ABCD,连接AC,交BQ于N,连接MN,∵底面ABCD是菱形,∴AQ∥BC,∴△ANQ∽△BCN,,又,∴,∴MN∥PA,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快递服务合同协议书
- 二零二四年度软件开发合同:手机应用程序定制开发
- 2024年度道路施工安全承包合同
- 2024版房地产买卖与经纪合同
- 二零二四年度保险合同的详细描述
- 二零二四年健身俱乐部会员合同3篇
- 二零二四年度加盟合同标的及服务内容详细描述2篇
- 二零二四年度维修合同:煤炭设备维修保养协议(2024版)
- 二零二四年度知识产权侵权责任保险合同
- 北京工业大学耿丹学院《论文写作指导》2022-2023学年第一学期期末试卷
- 浙江省温州市2024-2025学年高三上学期一模英语试题 含解析
- 专题10 议论文阅读(含答案) 2024年中考语文【热点-重点-难点】专练(上海专用)
- 21 小圣施威降大圣 公开课一等奖创新教案
- 初中数学教学“教-学-评”一体化研究
- 新概念英语第2册课文(完整版)
- 作业现场化学品安全告知卡
- 净水设备采购务投标方案(技术方案)
- 学校(幼儿园)每周食品安全排查治理报告(整学期16篇)
- 想象作文课件
- 2022年反洗钱阶段考试试题库
- GB/T 31989-2015高压电力用户用电安全
评论
0/150
提交评论