福建省福州市鼓楼区福州一中2024学年数学高二上期末预测试题含解析_第1页
福建省福州市鼓楼区福州一中2024学年数学高二上期末预测试题含解析_第2页
福建省福州市鼓楼区福州一中2024学年数学高二上期末预测试题含解析_第3页
福建省福州市鼓楼区福州一中2024学年数学高二上期末预测试题含解析_第4页
福建省福州市鼓楼区福州一中2024学年数学高二上期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市鼓楼区福州一中2024学年数学高二上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B.C. D.2.函数在区间(0,e)上的极小值为()A.-e B.1-eC.-1 D.13.函数在和处的导数的大小关系是()A. B.C. D.不能确定4.已知直线,若直线与垂直,则的倾斜角为()A. B.C. D.5.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=16.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知空间向量,,且,则的值为()A. B.C. D.8.(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为A. B.C. D.29.在等差数列中,,则的公差为()A.1 B.2C.3 D.410.已知数列的前n项和为,,,则()A. B.C.1025 D.204911.已知,,,,则()A. B.C. D.12.为调查学生的课外阅读情况,学校从高二年级四个班的182人中随机抽取30人了解情况,若用系统抽样的方法,则抽样的间隔和随机剔除的个数分别为()A.6,2 B.2,3C.2,60 D.60,2二、填空题:本题共4小题,每小题5分,共20分。13.圆关于y轴对称的圆的标准方程为___________.14.已知点是抛物线的准线与x轴的交点,F为抛物线的焦点,P是抛物线上的动点,则最小值为_____15.随机变量X的取值为0,1,2,若,,则_________16.已知三个数2,,6成等比数列,则实数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数其中.(1)当时,求函数的单调区间;(2)当时,函数有两个零点,,满足,证明.18.(12分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了名学生的得分(得分均为整数,满分为分)进行统计,所有学生的得分都不低于分,将这名学生的得分进行分组,第一组,第二组,第三组,第四组(单位:分),得到如下的频率分布直方图(1)求图中的值,估计此次竞赛活动学生得分的中位数;(2)根据频率分布直方图,估计此次竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计在参赛的名学生中有多少名学生获奖19.(12分)已知椭圆C:(a>b>0)的离心率e为,点在椭圆上(1)求椭圆C的方程;(2)若A、B为椭圆的左右顶点,过点(1,0)的直线交椭圆于M、N两点,设直线AM、BN的斜率分别为,求证为定值20.(12分)如图甲,在直角三角形中,已知,,,D,E分别是的中点.将沿折起,使点A到达点的位置,且,连接,得到如图乙所示的四棱锥,M为线段上一点.(1)证明:平面平面;(2)过B,C,M三点的平面与线段A'E相交于点N,从下列三个条件中选择一个作为已知条件,求直线DN与平面A'BC所成角的正弦值.①;②直线与所成角的大小为;③三棱锥的体积是三棱锥体积的注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)已知函数(a为非零常数)(1)若f(x)在处的切线经过点(2,ln2),求实数a的值;(2)有两个极值点,.①求实数a的取值范围;②若,证明:.22.(10分)已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【题目详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【题目点拨】本题主要考查了等差数列的基本量的求解,属于基础题.2、D【解题分析】求导判断函数的单调性即可求解【题目详解】的定义域为(0,+∞),,令,得x=1,当x∈(0,1)时,,单调递减,当x∈(1,e)时,,单调递增,故在x=1处取得极小值.故选:D.3、A【解题分析】求出函数导数即可比较.【题目详解】,,所以,即.故选:A.4、D【解题分析】由直线与垂直得到的斜率,再利用斜率与倾斜角的关系即可得到答案.【题目详解】因为直线与垂直,且,所以,解得,设的倾斜角为,,所以.故选:D5、A【解题分析】根据双曲线定义求解【题目详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题6、A【解题分析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【题目详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【题目点拨】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.7、B【解题分析】根据向量垂直得,即可求出的值.【题目详解】.故选:B.8、A【解题分析】由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.9、A【解题分析】根据等差数列性质可得方程组,求得公差.【题目详解】等差数列中,,,由通项公式可得解得故选:A10、B【解题分析】根据题意得,进而根据得数列是等比数列,公比为,首项为,再根据等比数列求和公式求解即可.【题目详解】解:因为数列的前n项和为满足,所以当时,,解得,当时,,即所以,解得或,因为,所以.所以,,所以当时,,所以,即所以数列是等比数列,公比为,首项为,所以故选:B11、D【解题分析】根据对数函数的性质和幂函数的单调性可得正确的选项.【题目详解】因为,故,故,又,在上的增函数,故,故,故选:D.12、A【解题分析】根据系统抽样的方法即可求解.【题目详解】从人中抽取人,除以,商余,故抽样的间隔为,需要随机剔除人.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据题意可得圆心坐标为,半径为1,利用平面直角坐标系点关于坐标轴对称特征可得所求的圆心坐标为,半径为1,进而得出结果.【题目详解】由题意知,圆的圆心坐标为,半径为1,设圆关于y轴对称的圆为,所以,半径为1,所以的标准方程为.故答案为:14、【解题分析】利用已知条件求出p,设出P的坐标,然后求解的表达式,利用基本不等式即可得出结论【题目详解】解:由题意可知:,设点,P到直线的距离为d,则,所以,当且仅当x时,的最小值为,此时,故答案为:【题目点拨】本题考查抛物线的简单性质的应用,基本不等式的应用,属于中档题15、##0.4【解题分析】设出概率,利用期望求出相应的概率,进而利用求方差公式进行求解.【题目详解】设,则,从而,解得:,所以故答案为:16、【解题分析】由题意可得,从而可求出的值【题目详解】因为三个数2,,6成等比数列,所以,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间,无递减区间;(2)证明见解析【解题分析】(1)求出函数的导数,从而判断其正负,确定函数的单调区间;(2)根据题意可得到,进而变形为,然后换元令,将证明的问题转换为成立的问题,从而构造新函数,求新函数的导数,判断其单调性,求其最值,进而证明不等式成立.【小问1详解】时,,,令,当时,,当时,,故,则,故是单调递增函数,即的单调递增区间为,无递减区间;【小问2详解】当时,函数有两个零点,,满足,即,所以,则,令,由于,则,则x2=tx故,要证明,只需证明,即证,设,令,则,当时,,即在时为增函数,故,即,所以在时为增函数,即,即,故,即.【题目点拨】本题考查了利用导数求函数的单调区间以及涉及到零点的不等式的证明问题,解答时要注意导数的应用,主要是根据导数的正负判断函数的单调性,进而求函数极值或最值,解答的关键时对函数式或者不等式进行合理的变形,进而能构造新的函数,利用新的函数的单调性或最值达到证明不等式成立的目的m.18、(1),中位数为;(2)得分的平均值为,估计有260名学生获奖.【解题分析】(1)根据给定的频率分布直方图,利用各小矩形面积和为1计算得值;再由在中位数两侧所对小矩形面积相等即可计算得解.(2)由频率分布直方图求平均数的方法求出得分平均值即可估计;再求出不低于平均分的频率即可估计获奖人数.【小问1详解】由频率分布直方图知:,解得,设此次竞赛活动学生得分的中位数为,因数据落在内的频率为0.4,落在内的频率为0.8,从而可得,由得:,所以,估计此次竞赛活动学生得分的中位数为.【小问2详解】由频率分布直方图及(1)知:数据落在,,,的频率分别为,,此次竞赛活动学生得分不低于82的频率为,则,所以估计此次竞赛活动得分的平均值为,在参赛的名学生中估计有260名学生获奖.19、(1);(2)证明见解析【解题分析】(1)根据题意列出关于a、b、c的方程组求出a、b、c即可得椭圆方程;(2)设直线的方程为,,,,,联立直线方程利用韦达定理即可求为定值【小问1详解】;【小问2详解】由椭圆方程可知,,,设直线的方程为,,,,,联立得,∴,,则,∵,,∴,把及代入可得:﹒20、(1)证明见解析(2)【解题分析】(1)由线面垂直的判定定理及面面垂直的判定定理可得证;(2)分别选①,②,③可求得为的中点,再以为坐标原点,向量的方向分别为轴,轴,轴建立空间直角坐标系.利用空间向量求得所求的线面角.【小问1详解】分别为的中点,.,,.,,平面.又平面,∴平面平面.【小问2详解】(2)选①,;,,,,为的中点.选②,直线与所成角的大小为;,∴直线与所成角为.又直线与所成角的大小为,,,为的中点.选③,三棱锥的体积是三棱锥体积的,又,即,为的中点.∵过三点的平面与线段相交于点平面,平面.又平面平面,,为的中点.两两互相垂直,∴以为坐标原点,向量的方向分别为轴,轴,轴的正方向,建立如图所示的空间直角坐标系.则;.设平面的一个法向量为,直线与平面所成的角为.由,得.令,得.则.∴直线与平面所成角的正弦值为.21、(1)(2)①(0,1);②证明见解析【解题分析】小问1先求出切线方程,再将点(2,ln2),代入即可求出a的值;小问2的①通过求导,再结合函数的单调性求出a的取值范围;②结合已知条件,构造新函数即可得到证明.【小问1详解】,∴切线方程为,将点代入解得:【小问2详解】①当时,即时,,f(x)在(-1,+∞)上单调递增;f(x)无极值点,当时,由得,,故f(x)在(-1,-)上单调递增,在(-,)上单调递减,在(,+∞)上单调递增,f(x)有两个极值点;.当时,由得,,f(x)(,)上单调递减,在(,+∞)上单调递此时,f(x)有1个极值点,综上,当时,f(x)有两个极值点,即,即a的范围是(0,1)②由(2)可知,又由可知,可得.要证,即证,即证,即证即证令函数,x(0,1),故t(x)在(0,1)上单调递增,又所以在上恒成立,即所以.22、(1)(2)【解题分析】(1)根据椭圆的简单几何性质知,又,写出椭圆的方程;(2)先斜截式设出直线,联立方程组,根据直线与圆锥曲线的位置关系,可得出中点为的坐标,再根据△为等腰三角形知,从而得的斜率为,求出,写出:,并计算,再根据点到直线距离公式求高,即可计算出面积【题目详解】(1)由已知得,,解得,又,所以椭圆的方程为(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论