2021-2022学年吉林省长春市榆树市大岗中学高二数学文月考试卷含解析_第1页
2021-2022学年吉林省长春市榆树市大岗中学高二数学文月考试卷含解析_第2页
2021-2022学年吉林省长春市榆树市大岗中学高二数学文月考试卷含解析_第3页
2021-2022学年吉林省长春市榆树市大岗中学高二数学文月考试卷含解析_第4页
2021-2022学年吉林省长春市榆树市大岗中学高二数学文月考试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年吉林省长春市榆树市大岗中学高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用反证法证明命题“已知,如果xy可被7整除,那么x,y至少有一个能被7整除”时,假设的内容是(

)A.x,y都不能被7整除 B.x,y都能被7整除C.x,y只有一个能被7整除 D.只有x不能被7整除参考答案:A【分析】本题考查反证法,至少有一个的反设词为一个都没有。【详解】x,y至少有一个能被7整除,则假设x,y都不能被7整除,故选A【点睛】原结论词反设词原结论词反设词至少有一个一个也没有至多有个至少有个至多有一个至少有两个对所有x成立存在某个x不成立至少有个至多有个对任意x不成立存某个x成立

2.函数在上最大值和最小值分别是(

)A.5,-15

B.5,-4

C.-4,-15

D

.5,-16参考答案:A3.8.设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则{an}的前n项和Sn=()A. B. C. D.n2+n参考答案:A考点;等差数列的前n项和;等比数列的性质.专题;计算题.分析;设数列{an}的公差为d,由题意得(2+2d)2=2?(2+5d),解得或d=0(舍去),由此可求出数列{an}的前n项和.解答;解:设数列{an}的公差为d,则根据题意得(2+2d)2=2?(2+5d),解得或d=0(舍去),所以数列{an}的前n项和.故选A.点评;本题考查数列的性质和应用,解题时要认真审题,仔细解答.4.椭圆的焦点坐标为(

)A.

B. C. D.参考答案:C5.用火柴棒摆“金鱼”,如图所示:参考答案:C略6.用红、黄、蓝、绿四种颜色给图中的A、B、C、D四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为(

)A.24 B.36 C.72 D.84参考答案:D试题分析:选两色有种,一色选择对角有种选法,共计种;选三色有种,其中一色重复有种选法,该色选择对角有种选法,另两色选位有种,共计种;四色全用有种(因为固定位置),合计种.考点:排列组合.7.在等差数列{an}中,a1+a5=8,a4=7,则a5等于()A.3 B.7 C.10 D.11参考答案:C【考点】等差数列的通项公式.【专题】等差数列与等比数列.【分析】设出等差数列的公差,由已知条件列式求出公差,则a5可求.【解答】解:设公差为d,则,解得,a1=﹣2,d=3,∴a5=a1+4d=﹣2+3×4=10.故选C.【点评】本题考查了等差数列的通项公式,是基础的运算题.8.不等式x2﹣2x﹣3<0的解集为(

)A.{x|﹣1<x<3} B.? C.R D.{x|﹣3<x<1}参考答案:A【考点】一元二次不等式的解法.【专题】计算题;方程思想;不等式的解法及应用.【分析】利用二次不等式的解法,求解即可.【解答】解:x2﹣2x﹣3=0,可得方程的解为:x=﹣1,x=3.不等式x2﹣2x﹣3<0的解集为:{x|﹣1<x<3}.故选:A.【点评】本题考查二次不等式的解法,考查计算能力.9.过点且与曲线在点处的切线垂直的直线方程为(

A.

B.

C.

D.参考答案:D

10.“"的否定是

(

)(A)

(B)(C)

(D)参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知双曲线右支上有一点A,它关于原点的对称点为B,双曲线的右焦点为F,满足,且,则双曲线的离心率e的值是______.参考答案:【分析】运用三角函数的定义可得,,取左焦点,连接,可得四边形为矩形,由双曲线的定义和矩形的性质,可得,由离心率公式可得结果.【详解】,可得,在中,,,在直角三角形中,,可得,,取左焦点,连接,可得四边形为矩形,,,故答案为.【点睛】本题考查双曲线的离心率的求法以及双曲线的应用,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.12.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术。得诀自诩无所阻,额上坟起终不悟。”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则__________.参考答案:63.∵,,,∴按照以上规律,可得.故答案为.13.设函数f(x)=|2x-4|+1,若不等式f(x)≤ax的解集非空,求a的取值范围是______.参考答案:(-∞,-2)∪,提示:数形结合

14.已知函数,函数(a>0),若存在,使得成立,则实数的取值范围是

。参考答案:15.已知球半径与一圆锥及一圆柱底半径相等,球直径与它们的高相等,圆锥、球、圆柱体积之比为.参考答案:1:2:3【考点】棱柱、棱锥、棱台的体积.【分析】设球半径为r,分另别求出圆锥、球、圆柱的体积,由此能求出圆锥、球、圆柱体积之比.【解答】解:设球半径为r,则圆锥体积V1=SH=,球体积V2=,圆柱体积V3=SH=πr2?2r=2πr3,∴圆锥、球、圆柱体积之比为:1:2:3.故答案为:1:2:3.16.给图中A、B、C、D、E、F六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有

种不同的染色方案

.参考答案:96

略17.已知函数,若、满足,且恒成立,则的最小值为

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知双曲线与椭圆有相同的焦点,且双曲线与椭圆的一个交点的纵坐标为4,求双曲线的方程,并求其渐近线方程。参考答案:本小题12分)解:因为椭圆的焦点为故可设双曲线方程为。由题设可知双曲线与椭圆的一个交点的纵坐标为4,将y=4代入椭圆方程得双曲线与椭圆的交点为在双曲线上,所以有略19.已知公差为正数的等差数列{an}满足:a1=1,且2a1,a3﹣1,a4+1成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若a2,a5分别是等比数列{bn}的第1项和第2项,求数列的前n项和Tn.参考答案:【考点】数列的求和;数列递推式.【分析】(Ⅰ)设数列{an}的公差为d(d>0),运用等比数列的中项的性质,以及等差数列的通项公式,即可得到所求;(Ⅱ)求得b1=a2=3,b2=a5=9,进而得到公比q=3,即可得到是以为首项,以为公比的等比数列,再由等比数列的求和公式即可得到所求.【解答】解:(Ⅰ)设数列{an}的公差为d(d>0),由2a1,a3﹣1,a4+1成等比数列,可得,则2(1+3d+1)=(1+2d﹣1)2,解得(舍去)或d=2,所以{an}的通项公式为an=2n﹣1;(Ⅱ)由(Ⅰ)可得,b1=a2=3,b2=a5=9,则等比数列{bn}的公比q=3,于是是以为首项,以为公比的等比数列.所以Tn=.20.在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.(Ⅰ)求圆C的圆心到直线l的距离;(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,),求|PA|+|PB|.参考答案:解:(Ⅰ)由,可得,即圆C的方程为.由可得直线l的方程为.所以,圆C的圆心到直线l的距离为.

…(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得,即.由于△=.故可设t1、t2是上述方程的两个实根,所以,又直线l过点,故由上式及t的几何意义得.

…(10分)略21.以下茎叶图记录了甲组3名同学寒假假期中去图书馆学习的次数和乙组4名同学寒假假期中去图书馆学习的次数.乙组记录中有一个数据模糊,无法确认,在图中以表示.(Ⅰ)如果,求乙组同学去图书馆学习次数的平均数和方差;(Ⅱ)如果,从学习次数大于8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.参考答案:解:(Ⅰ)当x=7时,由茎叶图可知,乙组同学去图书馆学习次数是:7,8,9,12,所以平均数为

……………3分方差为

……………6分(Ⅱ)记甲组3名同学为A1,A2,A3,他们去图书馆学习次数依次为9,12,11;乙组4名同学为B1,B2,B3,B4,他们去图书馆学习次数依次为9,8,9,12;从学习次数大于8的学生中人选两名学生,所有可能的结果有15个,它们是:A1A2,A1A3,A1B1,A1B3,A1B4,A2A3,A2B1,A2B3,A2B4,A3B1,A3B3,A3B4,B1B3,B1B4,B3B4.

……………9分用C表示:“选出的两名同学恰好在两个图书馆学习且学习的次数和大于20”这一事件,则C中的结果有5个,它们是:A1B4,A2B4,A2B3,A2B1,A3B4,

……………11分选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20概率为

……………12分略22.函数f(x)=x3+ax2+bx+c在与x=1时都取得极值(1)求a,b的值;(2)函数f(x)的单调区间.参考答案:【考点】函数在某点取得极值的条件;利用导数研究函数的单调性.【分析】(1)求出f′(x)并令其=0得到方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论