版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙二十一中2024届高二数学第一学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正方体中,E为的中点,则直线与平面所成角的正弦值为()A. B.C. D.2.已知P是直线上的动点,PA,PB是圆的切线,A,B为切点,C为圆心,那么四边形PACB的面积的最小值是()A2 B.C.3 D.3.直线的倾斜角为()A. B.C. D.4.不等式的一个必要不充分条件是()A. B.C. D.5.在直三棱柱中,,,则直线与所成角的大小为()A.30° B.60°C.120° D.150°6.函数的大致图象是()A. B.C. D.7.“直线的斜率不大于0”是“直线的倾斜角为钝角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.设等差数列的前n项和为,若,,则()A.60 B.80C.90 D.1009.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}10.命题:“,”的否定形式为()A., B.,C., D.,11.已知为等比数列的前n项和,,,则()A.30 B.C. D.30或12.已知函数,则函数在区间上的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线与直线的夹角大小等于_______14.数列满足前项和,则数列的通项公式为_____________15.在数列中,,,则数列的前6项和为___________.16.已知,则曲线在点处的切线方程是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为3的正方体中,分别是上的点且(1)求证:;(2)求平面与平面的夹角的余弦值18.(12分)已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)四边形的顶点在椭圆上,且对角线,均过坐标原点,若,求的取值范围.19.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围20.(12分)已知抛物线C的顶点在坐标原点,焦点在x轴上,点在抛物线C上(1)求抛物线C的方程;(2)过抛物线C焦点F的直线l交抛物线于P,Q两点,若求直线l的方程21.(12分)已知数列为等差数列,是公比为2的等比数列,且满足(1)求数列和的通项公式;(2)令求数列的前n项和;22.(10分)双曲线,离心率,虚轴长为2(1)求双曲线的标准方程;(2)经过点的直线与双曲线相交于两点,且为的中点,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】构建空间直角坐标系,求直线的方向向量、平面的法向量,应用空间向量的坐标表示,求直线与平面所成角的正弦值.【题目详解】以点D为坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,,,,可得,,,设面的法向量为,有,取,则,所以,,,则直线与平面所成角的正弦值为故选:D.2、D【解题分析】由圆C的标准方程可得圆心为(1,1),半径为1,根据切线的性质可得四边形PACB面积等于,,故求解最小时即可确定四边形PACB面积的最小值.【题目详解】圆C:x2+y2-2x-2y+1=0即,表示以C(1,1)为圆心,以1为半径的圆,由于四边形PACB面积等于2×××=,而,故当最小时,四边形PACB面积最小,又的最小值等于圆心C到直线l:的距离d,而,故四边形PACB面积的最小值为,故选:D3、D【解题分析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【题目详解】因为直线的斜率为,所以倾斜角.故选D【题目点拨】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.4、B【解题分析】解不等式,由此判断必要不充分条件.【题目详解】,解得,所以不等式的一个必要不充分条件是.故选:B5、B【解题分析】根据三棱柱的特征补全为正方体,则,为直线与所成角,连接,则为等边三角形即可得解.【题目详解】根据直三棱柱的特征,补全可得如图所示的正方体,易知,为直线与所成角,连接,则为等边三角形,所以,所以直线与所成角的大小为.故选:B6、A【解题分析】由得出函数是奇函数,再求得,,运用排除法可得选项.【题目详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【题目点拨】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.7、B【解题分析】直线倾斜角的范围是[0°,180°),直线斜率为倾斜角(不为90°)的正切值,据此即可判断求解.【题目详解】直线的斜率不大于0,则直线l斜率可能等于零,此时直线倾斜角为0°,不为钝角,故“直线的斜率不大于0”不是“直线的倾斜角为钝角”充分条件;直线的倾斜角为钝角时,直线的斜率为负,满足直线的斜率不大于0,即“直线的倾斜角为钝角”是“直线的斜率不大于0”的充分条件,“直线的斜率不大于0”是“直线的倾斜角为钝角”的必要条件;综上,“直线的斜率不大于0”是“直线的倾斜角为钝角”的必要不充分条件.故选:B.8、D【解题分析】由题设条件求出,从而可求.【题目详解】设公差为,因为,,故,解得,故,故选:D.9、C【解题分析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【题目点拨】本小题主要考查根据命题否定的真假性求参数,属于基础题.10、D【解题分析】根据含一个量词的命题的否定方法直接得到结果.【题目详解】因为全称命题的否定是特称命题,所以命题:“,”的否定形式为:,,故选:D.【题目点拨】本题考查全称命题的否定,难度容易.含一个量词的命题的否定方法:修改量词,否定结论.11、A【解题分析】利用等比数列基本量代换代入,列方程组,即可求解.【题目详解】由得,则等比数列的公比,则得,令,则即,解得或(舍去),,则故选:A12、B【解题分析】根据已知条件求得以及,利用导数判断函数的单调性,即可求得函数在区间上的最小值.【题目详解】因为,故可得,则,又,令,解得,令,解得,故在单调递减,在单调递增,又,故在区间上的最小值为.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、##【解题分析】根据直线的倾斜角可得答案.【题目详解】直线是与轴平行的直线,直线的斜率为1,即与轴的夹角为角,故直线与直线的夹角大小等于.故答案为:.14、【解题分析】由已知中前项和,结合,分别讨论时与时的通项公式,并由时,的值不满足时的通项公式,故要将数列的通项公式写成分段函数的形式【题目详解】∵数列前项和,∴当时,,又∵当时,,故,故答案为.【题目点拨】本题考查的知识点是等差数列的通项公式,其中正确理解由数列的前n项和Sn,求通项公式的方法和步骤是解答本题的关键15、129【解题分析】依次写出前6项,即可求得数列的前6项和.【题目详解】数列中,,则,,,则数列的前6项和为故答案为:12916、【解题分析】求导,得到,写出切线方程.【题目详解】因为,所以,则,所以曲线在点处的切线方程是,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)建立空间直角坐标系后得到相关向量,再运用数量积证明;(2)求出相关平面的法向量,再运用夹角公式计算即可.【小问1详解】建立如下图所示的空间直角坐标系:,,,,,∴,故.【小问2详解】,,,设平面的一个法向量为,由,令,则,取平面的一个法向量为,设平面与平面夹角为,易知:为锐角,故,即平面与平面夹角的余弦值为.18、(1)(2)【解题分析】(1)根据椭圆的离心率为,且过点,由求解;(2)设直线AC方程为,则直线BD的方程为,分时,与椭圆方程联立求得A,B的坐标,再利用数量积求解.【小问1详解】解:因为椭圆的离心率为,且过点,所以,所以,所以椭圆的方程为;【小问2详解】设直线AC的方程为,则直线BD的方程为.当时,联立,得,不妨设A,联立,得,当B时,,,当B时,,,当时,同理可得上述结论.综上,19、或【解题分析】先分别求出,为真时,的范围;再求交集,即可得出结果.【题目详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.20、(1)(2)或【解题分析】(1)把点的坐标代入方程即可;(2)设直线方程,解联立方程组,消未知数,得到一元二次方程,再利用韦达定理和已知条件求斜率.【小问1详解】因为抛物线C的顶点在原点,焦点在x轴上,所以设抛物线方程为又因为点在抛物线C上,所以,解得,所以抛物线的方程为;【小问2详解】抛物线C的焦点为,当直线l的斜率不存在时,,不符合题意;当直线l的斜率存在时,设直线l的方程为,设直线l交抛物线的两点坐标为,,由得,,,,由抛物线得定义可知,所以,解得,即,所以直线l的方程为或21、(1),(2)【解题分析】(1)根据等差数列和等比数列通项公式得到,根据通项公式的求法得到结果;(2)分组求和即可.【小问1详解】设的公差为,由已知,有解得,所以的通项公式为,的通项公式为.【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光合科技公司战略合作框架方案
- 2024-2030年中国聚氨酯胶粘剂行业竞争态势及盈利能力预测报告
- 2024-2030年中国网果筋骨草提取物产业未来发展趋势及投资策略分析报告
- 2024-2030年中国绿色产业园开发行业创新融资及投资规划分析报告
- 2024-2030年中国继电器行业竞争战略及未来发展潜力预测报告
- 2024-2030年中国纸质文具行业竞争动态及投资效益预测报告
- 2024-2030年中国糯玉米汁饮料市场销售动态与竞争趋势预测报告
- 2024-2030年中国管理软件行业发展战略及投资创新模式分析报告
- 2024-2030年中国立磨行业供需趋势及投资策略研究报告
- 2024-2030年中国磷酸二铵行业市场十三五需求预测及投资可行性分析报告
- 数字货币对会计的影响
- 2024-2029年中国船用轴带发电机行业市场现状分析及竞争格局与投资发展研究报告
- 我的家乡吉林课件
- 云南开放大学学前儿童社会教育离线作业1-4
- 二年级100以内加减乘除混合口算题(直接打印)
- 写作与沟通智慧树知到期末考试答案章节答案2024年杭州师范大学
- 2023全国大学生网络安全知识竞赛题库及答案大全
- 新课标“物联网实践与探索”模块教学设计与实施
- 大学生职业生涯规划书工业机器人技术专业
- 《中华民族多元一体格局》
- 《心理统计学》练习题库
评论
0/150
提交评论