2024学年广东省广州第七中学高二上数学期末调研模拟试题含解析_第1页
2024学年广东省广州第七中学高二上数学期末调研模拟试题含解析_第2页
2024学年广东省广州第七中学高二上数学期末调研模拟试题含解析_第3页
2024学年广东省广州第七中学高二上数学期末调研模拟试题含解析_第4页
2024学年广东省广州第七中学高二上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年广东省广州第七中学高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.2.函数在的图象大致为()A. B.C D.3.和的等差中项与等比中项分别为()A., B.2,C., D.1,4.设等差数列,的前n项和分别是,若,则()A. B.C. D.5.已知直线的倾斜角为,在轴上的截距为,则此直线的方程为()A. B.C. D.6.我们知道∶用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于()A. B.C. D.17.如图,在平行六面体中,设,,,用基底表示向量,则()A. B.C. D.8.已知关于的不等式的解集是,则的值是()A B.5C. D.79.若方程表示圆,则实数m的取值范围为()A B.C. D.10.如图,在平行六面体中,AC与BD的交点为M,设,,,则下列向量中与相等的向量是()A. B.C. D.11.为了调查全国人口的寿命,抽查了11个省(市)的2500名城镇居民,这2500名城镇居民的寿命的全体是()A.总体 B.个体C.样本 D.样本容量12.过双曲线的右焦点F作一条渐近线的垂线,垂足为M,且FM的中点A在双曲线上,则双曲线离心率e等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线焦点坐标是,则______14.以正方体的对角线的交点为坐标原点O建立右手系的空间直角坐标系,其中,,,则点的坐标为______15.若不等式的解集为,则________16.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线的左,右焦点为,离心率为.(1)求双曲线C的渐近线方程;(2)过作斜率为k的直线l分别交双曲线的两条渐近线于A,B两点,若,求k的值.18.(12分)设数列的前项和,且成等差数列.(1)求数列的通项公式;(2)记数列前项和,求使成立的的最小值19.(12分)已知三角形的三个顶点,求边所在直线的方程,以及该边上中线所在直线的方程20.(12分)某学校一航模小组进行飞机模型飞行高度实验,飞机模型在第一分钟时间内上升了米高度.若通过动力控制系统,可使飞机模型在以后的每一分钟上升的高度都是它在前一分钟上升高度的(1)在此动力控制系统下,该飞机模型在第三分钟内上升的高度是多少米?(2)这个飞机模型上升的最大高度能超过米吗?如果能,求出从第几分钟开始高度超过米;如果不能,请说明理由21.(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)若不过点的直线交椭圆于两点,求面积的最大值.22.(10分)近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对服务满意之间有关系”?对服务满意对服务不满意合计对商品满意80对商品不满意10合计200(2)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量,求的分布列和数学期望.临界值表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.89710.828的观测值:(其中).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【题目详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D2、D【解题分析】函数|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选:D.3、C【解题分析】根据等差中项和等比中项的概念分别求值即可.【题目详解】和的等差中项为,和的等比中项为.故选:C.4、C【解题分析】结合等差数列前项和公式求得正确答案.【题目详解】依题意等差数列,的前n项和分别是,由于,故可设,,当时,,,所以,所以.故选:C5、D【解题分析】求出直线的斜率,利用斜截式可得出直线的方程.【题目详解】直线的斜率为,由题意可知,所求直线的方程为.故选:D.6、C【解题分析】由圆锥的底面半径和高及E的位置可得,建立适当的平面直角坐标系,可得C的坐标,设抛物线的方程,将C的坐标代入求出抛物线的方程,进而可得焦点到其准线的距离【题目详解】设AB,CD的交点为,连接PO,由题意可得PO⊥面AB,所以PO⊥OB,由题意OB=OP=OC=2,因为E是母线PB的中点,所以,由题意建立适当的坐标系,以BP为y轴以OE为x轴,E为坐标原点,如图所示∶可得∶,设抛物线的方程为y2=mx,将C点坐标代入可得,所以,所以抛物线的方程为∶,所以焦点坐标为,准线方程为,所以焦点到其准线的距离为故选:C7、B【解题分析】直接利用空间向量基本定理求解即可【题目详解】因为在平行六面体中,,,,所以,故选:B8、D【解题分析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【题目详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D9、D【解题分析】根据,解不等式即可求解.【题目详解】由方程表示圆,则,解得.所以实数m的取值范围为.故选:D10、B【解题分析】根据向量加法和减法法则即可用、、表示出.【题目详解】故选:B.11、C【解题分析】由样本的概念即知.【题目详解】由题意可知,这2500名城镇居民的寿命的全体是样本.12、A【解题分析】根据题意可表示出渐近线方程,进而可知的斜率,表示出直线方程,求出的坐标进而求得A点坐标,代入双曲线方程整理求得和的关系式,进而求得离心率【题目详解】:由题意设相应的渐近线:,则根据直线的斜率为,则的方程为,联立双曲线渐近线方程求出,则,,则的中点,把中点坐标代入双曲线方程中,即,整理得,即,求得,即离心率为,故答案为:二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】根据抛物线的几何性质直接求解可得.【题目详解】的焦点坐标为,即.故答案为:214、【解题分析】根据已知点的坐标,确定出坐标系即可得【题目详解】如图,由已知得坐标系如图所示,轴过正方形的对角线交点,轴过中点,轴过中点,因此可知坐标为故答案为:15、11【解题分析】根据题意得到2与3是方程的两个根,再根据两根之和与两根之积求出,进而求出答案.【题目详解】由题意得:2与3是方程的两个根,则,,所以.故答案为:1116、【解题分析】化简椭圆的方程为标准形式,列出不等式,即可求解.【题目详解】由题意,方程可化为,因为方程表示焦点在轴上的椭圆,可得,解得,实数的取值范围是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由离心率可得双曲线的渐近线方程;(2)设,则的中点为,由,可得,然后的方程与双曲线的渐近线方程联立,利用韦达定理可得答案.【小问1详解】设,则,又,所以,得,所以双曲线的渐近线方程为.【小问2详解】由已知直线的倾斜角不是直角,,设,则的中点为,,由,可知,所以,即,因为的方程为,双曲线的渐近线方程可写为,由消去y,得,所以,,所以,因为,所以,即.18、(1).(2)10.【解题分析】(1)借助于将转化为,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列的通项公式,可知数列为等比数列,求得前n项和,代入不等式可求得n的最小值试题解析:(1)由已知,有,即从而又因为成等差数列,即所以,解得所以,数列是首项为2,公比为2的等比数列故(2)由(1)得.所以由,得,即因为,所以.于是,使成立的n的最小值为10考点:1.数列通项公式;2.等比数列求和19、;【解题分析】根据两点式方程和中点坐标公式求解,并化为一般式方程即可.【题目详解】解:过的两点式方程为,整理得即边所在直线的方程为,边上的中线是顶点A与边中点M所连线段,由中点坐标公式可得点M的坐标为,即过,的直线的方程为,即整理得所以边上中线所在直线的方程为20、(1);(2)不能,理由见解析.【解题分析】(1)由题得每分钟上升的高度构成等比数列,再利用等比数列的通项求解;(2)求出即得解.【小问1详解】解:由题意,飞机模型每分钟上升的高度构成,公比的等比数列,则米.即飞机模型在第三分钟内上升的高度是米.【小问2详解】解:不能超过米.依题意可得,所以这个飞机模型上升的最大高度不能超过米.21、(1);(2).【解题分析】(1)根据,可设,,求出,得到椭圆的方程,代入点的坐标,求出,即可得出结果.(2)设出点,的坐标,直线与椭圆方程联立,利用韦达定理求出弦长,由点到直线的距离公式,三角形的面积公式及基本不等式可得结论.【题目详解】(1)因为,所以设,,则,椭圆的方程为.代入点的坐标得,,所以椭圆的方程为.(2)设点,的坐标分别为,,由,得,即,,,,.,点到直线的距离,的面积,当且仅当,即时等号成立.所以当时,面积的最大值为.【题目点拨】本题主要考查了椭圆的标准方程和性质,直线与椭圆相交问题.属于中档题.22、(1)列联表见解析,能有;(2)分布列见解析,.【解题分析】(1)利用数据直接填写联列表即可,求出,即可回答是否有的把握认为“网购者对商品满意与对服务满意之间有关系;(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论