版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年北京平谷区第三中学高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,则()A.b<a<c B.c<b<a C.c<a<b D.a<b<c参考答案:C【考点】对数值大小的比较.【专题】数形结合;转化思想;函数的性质及应用.【分析】利用指数函数、对数函数及其幂函数的单调性即可判断出正误.【解答】解:∵,log30.6<0<<,∴c<a<b.故选:C.【点评】本题考查了函数的单调性,考查了推理能力与计算能力,属于基础题.2.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=lnx,则有A.f()<f(2)<f()
B.f()<f(2)<f()
C.f()<f()<f(2)
D.f(2)<f()<f()参考答案:C函数满足f(2-x)=f(x),则:,,当x≥1时,f(x)=lnx,即函数在区间上单调递增,由函数的单调性可得:,故.本题选择C选项.
3.要得到的图象只需将的图象
()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位参考答案:C略4.下列函数中,既是奇函数又是增函数的为()A.y=cosx﹣1B.y=﹣x2C.y=x?|x|D.y=﹣参考答案:C考点:函数奇偶性的判断;函数单调性的判断与证明.专题:计算题;函数的性质及应用.分析:运用常见函数的奇偶性和单调性以及定义,即可得到既是奇函数又是增函数的函数.解答:解:对于A.定义域为R,f(﹣x)=cos(﹣x)﹣1=cosx﹣1=f(x),则为偶函数,则A不满足条件;对于B.定义域为R,f(﹣x)=f(x),则为偶函数,则B不满足条件;对于C.定义域为R,f(﹣x)=(﹣x)|﹣x|=﹣x|x|=﹣f(x),则为奇函数,当x>0时,f(x)=x2递增,且f(0)=0,当x<0时,f(x)=﹣x2递增,则f(x)在R上递增,则C满足条件;对于D.定义域为{x|x≠0},关于原点对称,f(﹣x)==﹣f(x),当x>0时,f(x)递增,当x<0时,f(x)递增,但在定义域内不为递增,则D不满足条件.故选:C.点评:本题考查函数的奇偶性和单调性的判断,考查常见函数的奇偶性和单调性和定义的运用,考查运算能力,属于基础题和易错题.5.已知函数,的图像与直线的两个相邻交点的距离等于,则的单调递增区间是(A)
(B)(C)
(D)参考答案:解析:,由题设的周期为,∴,由得,,故选C6.下列函数中,在其定义域内既是奇函数又是减函数的是
(
)
A.
B.
C.
D.参考答案:A7.设α,β是两个不同的平面,l,m是两条不同的直线,且l?α,m?β下面命题正确的是()A.若l∥β,则α∥β B.若α⊥β,则l⊥m C.若l⊥β,则α⊥β D.若α∥β,则l∥m参考答案:C【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】对4个命题分别进行判断,即可得出结论.【解答】解:对于A,若l∥β,则α∥β或α,β相交,不正确;对于B,若α⊥β,则l、m位置关系不定,不正确;对于C,根据平面与平面垂直的判定,可知正确;对于D,α∥β,则l、m位置关系不定,不正确.故选C.8.已知首项为正数的等差数列满足:,,则使其前n项和成立的最大自然数n是(
).A.4016
B.4017
C.4018
D.4019参考答案:C略9.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积及体积为()
A.24πcm2,12πcm3
B.15π
cm2,12πcm3C.24πcm2,36πcm3
D.以上都不正确参考答案:A略10.在空间直角坐标系中,若P(3,-2,1)则P点关于坐标平面xOz的对称点坐标为:A.(-3,-2,-1)
B.(3,2,1)
C.(-3,2,-1)
D.(3,-2,-1)参考答案:B在空间直角坐标系中,若P(3,-2,1)则P点关于坐标平面xOz的对称点坐标为:(3,2,1)。二、填空题:本大题共7小题,每小题4分,共28分11.在中,已知60°,45°,则____________;参考答案:略12.点是单位圆上的一个动点,它从初始位置开始沿单位圆按逆时针方向运动角()到达点,然后继续沿单位圆逆时针方向运动到达点.若点的横坐标为,则
▲.参考答案:略13.若函数在上的最大值与最小值之差为2,则
.参考答案:14.观察下列不等式:(1)(2)(3)………………由此规律推测,第n个不等式为:
.参考答案:
15.在△ABC中,A、B、C的对边分别是a、b、c,且都是方程的根,则△ABC的形状是 参考答案:A=30°,B=60°的直角三角形16.在△ABC中,角A、B、C所对的边分别为a、b、c,且,则角A的大小为______.参考答案:60°【分析】根据已知条件和余弦定理,即可求出角A的大小.【详解】,由余弦定理得,A为△ABC的内角,.故答案为.【点睛】本题考查给出三角形的边角关系求角的问题,着重考查余弦定理,属于基础题.17.若等比数列的各项均为正数,且,则
.参考答案:50三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆:,直线.(1)求证:对,直线与圆总有两个不同交点;(2)设直线与圆交于不同两点,求弦的中点的轨迹方程;(3)若定点分弦所得向量满足,求此时直线的方程.参考答案:(1)略;(2)(3)或19.已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.参考答案:(1)见解析;(2),。【分析】(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果。【详解】(1)由题意可知,,,,所以,即,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为的等差数列,。(2)由(1)可知,,,所以,。【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题。20.根据三视图(如图)想象物体原型,并画出直观图.参考答案:(1)几何体为长方体与三棱柱的组合体.其中,长方体的底面是正方形,且三棱柱的一个侧面与长方体的上底面正方形重叠;(2)几何体为长方体与圆柱的组合体.圆柱的一个底面在正四棱柱的上底面,且圆柱的底面圆与正四棱柱上底面的正方形内切.它们的直观图如图所示.21.(14分)已知二次函数f(x)满足=f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,(1)求f(x)的解析式;(2)当x∈[﹣1,1]时,求函数g(x)=f(x)﹣2x的值域.参考答案:【考点】二次函数的性质;函数的值域.【专题】计算题;函数思想;待定系数法;函数的性质及应用.【分析】(1)要求二次函数的解析式,利用直接设解析式的方法,一定要注意二次项系数不等于零,在解答的过程中使用系数的对应关系,解方程组求的结果;(2)求得二次函数g(x)的解析式,求得对称轴,可得[﹣1,]为减区间,即可得到最值,进而得到值域.【解答】解:(1)设二次函数的解析式为f(x)=ax2+bx+c(a≠0),由f(0)=1得c=1,故f(x)=ax2+bx+1.因为f(x+1)﹣f(x)=2x,所以a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=2x.即2ax+a+b=2x,根据系数对应相等,∴,所以f(x)=x2﹣x+1;(2)当x∈[﹣1,1]时,函数g(x)=f(x)﹣2x=x2﹣3x+1=(x﹣)2﹣,对称轴为x=,区间[﹣1,1]在对称轴的左边,为减区间,即有x=﹣1时取得最大值,且为5,x=1时取得最小值,且为﹣1.故值域为[﹣1,5].【点评】本题考查二次函数的解析式的求法,注意运用待定系数法,考查二次函数的值域的求法,注意运用函数的单调性,属于基础题.22.(本小题12分)计算下列各式:(1);
(2).参考答案:(1)原式
………………2分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盆景寄养合同范本
- 网络设备租赁合同三篇
- 秘书工作中文件管理的重要性计划
- 二手房委托买房合同范本
- 柴油销售合同范本
- 进车合同范本
- 女方打胎合同范本
- 礼堂维修承包合同范本
- 微会员合同范本
- 房屋设施租赁合同范本
- 城乡生活污水处理环境影响与风险评估
- 厂房租赁合同范本版(18篇)
- DB22T 5165-2024 建设工程消防验收现场评定标准
- 浙江省嵊州市三界片2024-2025学年七年级上学期期中科学测试卷
- 2024年度乡村医生资格考试专业基础知识考试题库及答案(共500套)
- 专题15:现代文阅读(小说)-2024年中考语文一轮复习综合强化训练解析版
- 能源中国学习通超星期末考试答案章节答案2024年
- 2024广东省云浮市郁南县财政局工程造价类专业人员招聘4人高频难、易错点500题模拟试题附带答案详解
- 军队文职考试《公共科目》试题及答案指导(2024年)
- 山东省青岛市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 2024下半年江苏苏州城市学院招聘管理岗位工作人员27人历年高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论